Skip to main content

Advertisement

Log in

Aldehyde dehydrogenase activity of Wharton jelly mesenchymal stromal cells: isolation and characterization

  • Methods paper
  • Published:
Cytotechnology Aims and scope Submit manuscript

Abstract

Mesenchymal stromal cells (MSCs) are promising tools in regenerative medicine and targeted therapies. Although different origins have been described, there is still huge need to find a valuable source harboring specific subpopulations of MSCs with precise therapeutic functions. Here, we isolated by fluorescence activated cell sorting technique, two populations of Wharton’s jelly (WJ)-MSCs based on their aldehyde dehydrogenase (ALDH) activity. Two different ALDH activities (low vs. high) were thus observed. We then analyzed their gene expression profile for stemness, phenotype, response to hypoxia, angiogenesis, hematopoietic support, immunomodulation and multilineage differentiation abilities (osteogenesis, adipogenesis, and chondrogenesis). According to ALDH activity, many differences in the mRNA expression of these populations were noticed. In conclusion, we provide evidences that WJ harbors two distinct populations of MSCs with different ALDH activity. These populations seem to display specific functional competences that may be interesting for concise therapeutic applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Abdi R, Fiorina P, Adra CN, Atkinson M, Sayegh MH (2008) Immunomodulation by mesenchymal stem cells: a potential therapeutic strategy for type 1 diabetes. Diabetes 57:1759–1767

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aleksander-Konert E, Paduszynski P, Zajdel A, Dzierzewicz Z, Wilczok A (2016) In vitro chondrogenesis of Wharton’s jelly mesenchymal stem cells in hyaluronic acid-based hydrogels. Cell Mol Biol Lett 21:11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alison MR, Guppy NJ, Lim SML, Nicholson LJ (2010) Finding cancer stem cells: are aldehyde dehydrogenases fit for purpose? J Pathol 222:335–344

    Article  PubMed  Google Scholar 

  • Arutyunyan I, Elchaninov A, Makarov A, Fatkhudinov T (2016) Umbilical cord as prospective source for mesenchymal stem cell-based therapy. Stem Cells Int 2016:6901286

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Atouf F, Provost NM, Rosenthal FM (2013) Standards for ancillary materials used in cell- and tissue-based therapies. MBA Sunday, September 1, 2013. http://www.bioprocessintl.com/upstream-processing/biochemicals-raw-materials/standards-for-ancillary-materials-used-in-cell-and-tissue-based-therapies-346300/

  • Avercenc-Leger L, Guerci P, Virion JM et al (2017) Umbilical cord-derived mesenchymal stromal cells: predictive obstetric factors for cell proliferation and chondrogenic differentiation. Stem Cell Res Ther 8:161

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baer PC (2014) Adipose-derived mesenchymal stromal/stem cells: an update on their phenotype in vivo and in vitro. World J Stem Cells 6:256–265

    Article  PubMed  PubMed Central  Google Scholar 

  • Baksh D, Yao R, Tuan RS (2007) Comparison of proliferative and multilineage differentiation potential of human mesenchymal stem cells derived from umbilical cord and bone marrow. Stem Cells 25:1384–1392

    Article  CAS  PubMed  Google Scholar 

  • Balber AE (2011) Concise review: aldehyde dehydrogenase bright stem and progenitor cell populations from normal tissues: characteristics, activities, and emerging uses in regenerative medicine. Stem Cells 29:570–575

    Article  CAS  PubMed  Google Scholar 

  • Bartels K, Grenz A, Eltzschig HK (2013) Hypoxia and inflammation are two sides of the same coin. Proc Natl Acad Sci USA 110:18351–18352

    Article  CAS  PubMed  Google Scholar 

  • Batsali AK, Pontikoglou C, Koutroulakis D et al (2017) Differential expression of cell cycle and WNT pathway-related genes accounts for differences in the growth and differentiation potential of Wharton’s jelly and bone marrow-derived mesenchymal stem cells. Stem Cell Res Ther 8:102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beeravolu N, McKee C, Alamri A et al (2017) Isolation and characterization of mesenchymal stromal cells from human umbilical cord and fetal placenta. J Vis Exp. https://doi.org/10.3791/55224

    Article  PubMed  PubMed Central  Google Scholar 

  • Boey PYK, Lim SLD, Tang KF et al (2017) Comparative study of the methods of extracting mesenchymal stem cells from cryopreserved Wharton’s jelly. J Stem Cells Regen Med 13:29–32

    PubMed  PubMed Central  Google Scholar 

  • Briquet A, Dubois S, Bekaert S et al (2010) Prolonged ex vivo culture of human bone marrow mesenchymal stem cells influences their supportive activity toward NOD/SCID-repopulating cells and committed progenitor cells of B lymphoid and myeloid lineages. Haematologica 95:47–56

    Article  PubMed  Google Scholar 

  • Busser H, Najar M, Raicevic G et al (2015) Isolation and characterization of human mesenchymal stromal cell subpopulations: comparison of bone marrow and adipose tissue. Stem Cells Dev 24:2142–2157

    Article  CAS  PubMed  Google Scholar 

  • Chen G, Yue A, Ruan Z et al (2015) Comparison of biological characteristics of mesenchymal stem cells derived from maternal-origin placenta and Wharton’s jelly. Stem Cell Res Ther 6:228

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Davies JE, Walker JT, Keating A (2017) Concise review: Wharton’s jelly: the rich, but enigmatic, source of mesenchymal stromal cells. Stem Cells Transl Med 6:1620–1630

    Article  PubMed  PubMed Central  Google Scholar 

  • De Kock J, Najar M, Bolleyn J et al (2012) Mesoderm-derived stem cells: the link between the transcriptome and their differentiation potential. Stem Cells Dev 21:3309–3323

    Article  CAS  PubMed  Google Scholar 

  • D’Ippolito G, Diabira S, Howard GA, Roos BA, Schiller PC (2006) Low oxygen tension inhibits osteogenic differentiation and enhances stemness of human MIAMI cells. Bone 39:513–522

    Article  CAS  PubMed  Google Scholar 

  • Dolatabadi S, Candia J, Akrap N et al (2017) Cell cycle and cell size dependent gene expression reveals distinct subpopulations at single-cell level. Front Genet 8:1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dolle L, Best J, Empsen C et al (2012) Successful isolation of liver progenitor cells by aldehyde dehydrogenase activity in naive mice. Hepatology 55:540–552

    Article  CAS  PubMed  Google Scholar 

  • Dolle L, Boulter L, Leclercq IA, van Grunsven LA (2015) Next generation of ALDH substrates and their potential to study maturational lineage biology in stem and progenitor cells. Am J Physiol Gastrointest Liver Physiol 308:G573–G578

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Du W, Li X, Chi Y et al (2016a) VCAM-1 + placenta chorionic villi-derived mesenchymal stem cells display potent pro-angiogenic activity. Stem Cell Res Ther 7:49

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Du WJ, Chi Y, Yang ZX et al (2016b) Heterogeneity of proangiogenic features in mesenchymal stem cells derived from bone marrow, adipose tissue, umbilical cord, and placenta. Stem Cell Res Ther 7:163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dunavin N, Dias A, Li M, McGuirk J (2017) Mesenchymal stromal cells: What is the mechanism in acute graft-versus-host disease? Biomedicines 5:39

    Article  CAS  PubMed Central  Google Scholar 

  • Edwards SS, Zavala G, Prieto CP et al (2014) Functional analysis reveals angiogenic potential of human mesenchymal stem cells from Wharton’s jelly in dermal regeneration. Angiogenesis 17:851–866

    Article  CAS  PubMed  Google Scholar 

  • El Omar R, Beroud J, Stoltz JF et al (2014) Umbilical cord mesenchymal stem cells: the new gold standard for mesenchymal stem cell-based therapies? Tissue Eng B Rev 20:523–544

    Article  Google Scholar 

  • Espagnolle N, Balguerie A, Arnaud E, Sensebe L, Varin A (2017) CD54-mediated interaction with pro-inflammatory macrophages increases the immunosuppressive function of human mesenchymal stromal cells. Stem Cell Rep 8:961–976

    Article  CAS  Google Scholar 

  • Estes BT, Wu AW, Storms RW, Guilak F (2006) Extended passaging, but not aldehyde dehydrogenase activity, increases the chondrogenic potential of human adipose-derived adult stem cells. J Cell Physiol 209:987–995

    Article  CAS  PubMed  Google Scholar 

  • Fajardo-Orduna GR, Mayani H, Montesinos JJ (2015) Hematopoietic support capacity of mesenchymal stem cells: biology and clinical potential. Arch Med Res 46:589–596

    Article  CAS  PubMed  Google Scholar 

  • Fayyad-Kazan M, Najar M, Fayyad-Kazan H, Raicevic G, Lagneaux L (2017) Identification and evaluation of new immunoregulatory genes in mesenchymal stromal cells of different origins: comparison of normal and inflammatory conditions. Med Sci Monit Basic Res 23:87–96

    Article  PubMed  PubMed Central  Google Scholar 

  • Forostyak S, Jendelova P, Sykova E (2013) The role of mesenchymal stromal cells in spinal cord injury, regenerative medicine and possible clinical applications. Biochimie 95:2257–2270

    Article  CAS  PubMed  Google Scholar 

  • Gonzalez-Fernandez ML, Perez-Castrillo S, Ordas-Fernandez P et al (2015) Study on viability and chondrogenic differentiation of cryopreserved adipose tissue-derived mesenchymal stromal cells for future use in regenerative medicine. Cryobiology 71:256–263

    Article  CAS  PubMed  Google Scholar 

  • Hegab AE, Ha VL, Bisht B et al (2014) Aldehyde dehydrogenase activity enriches for proximal airway basal stem cells and promotes their proliferation. Stem Cells Dev 23:664–675

    Article  CAS  PubMed  Google Scholar 

  • Heo JS, Choi Y, Kim HS, Kim HO (2016) Comparison of molecular profiles of human mesenchymal stem cells derived from bone marrow, umbilical cord blood, placenta and adipose tissue. Int J Mol Med 37:115–125

    Article  PubMed  Google Scholar 

  • Herzenberg LA, Parks D, Sahaf B et al (2002) The history and future of the fluorescence activated cell sorter and flow cytometry: a view from Stanford. Clin Chem 48:1819–1827

    CAS  PubMed  Google Scholar 

  • Himal I, Goyal U, Ta M (2017) Evaluating Wharton’s jelly-derived mesenchymal stem cell’s survival, migration, and expression of wound repair markers under conditions of ischemia-like stress. Stem Cells Int 2017:5259849

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hoogduijn MJ, Popp F, Verbeek R et al (2010) The immunomodulatory properties of mesenchymal stem cells and their use for immunotherapy. Int Immunopharmacol 10:1496–1500

    Article  CAS  PubMed  Google Scholar 

  • Huang HI, Chen SK, Ling QD et al (2010) Multilineage differentiation potential of fibroblast-like stromal cells derived from human skin. Tissue Eng A 16:1491–1501

    Article  CAS  Google Scholar 

  • Kamolz LP, Keck M, Kasper C (2014) Wharton’s jelly mesenchymal stem cells promote wound healing and tissue regeneration. Stem Cell Res Ther 5:62

    Article  PubMed  PubMed Central  Google Scholar 

  • Kang CM, Kim H, Song JS et al (2016) Genetic comparison of stemness of human umbilical cord and dental pulp. Stem Cells Int 2016:3453890

    PubMed  PubMed Central  Google Scholar 

  • Kusuma GD, Abumaree MH, Pertile MD et al (2016) Mesenchymal stem/stromal cells derived from a reproductive tissue niche under oxidative stress have high aldehyde dehydrogenase activity. Stem Cell Rev 12:285–297

    Article  CAS  Google Scholar 

  • Kusuma GD, Abumaree MH, Perkins AV, Brennecke SP, Kalionis B (2017) Reduced aldehyde dehydrogenase expression in preeclamptic decidual mesenchymal stem/stromal cells is restored by aldehyde dehydrogenase agonists. Sci Rep 7:42397

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee JE, Ge K (2014) Transcriptional and epigenetic regulation of PPARgamma expression during adipogenesis. Cell Biosci 4:29

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee JM, Jung J, Lee HJ et al (2012) Comparison of immunomodulatory effects of placenta mesenchymal stem cells with bone marrow and adipose mesenchymal stem cells. Int Immunopharmacol 13:219–224

    Article  CAS  PubMed  Google Scholar 

  • Ma I, Allan AL (2011) The role of human aldehyde dehydrogenase in normal and cancer stem cells. Stem Cell Rev 7:292–306

    Article  CAS  Google Scholar 

  • Mandelli F, Lauria F, Majolino I (1999) Autologous transplantation with peripheral blood stem cells in chronic lymphocytic leukemia. Hematol Cell Ther 41:117–125

    Google Scholar 

  • Meng E, Mitra A, Tripathi K et al (2014) ALDH1A1 maintains ovarian cancer stem cell-like properties by altered regulation of cell cycle checkpoint and DNA repair network signaling. PLoS ONE 9:e107142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Menssen A, Haupl T, Sittinger M et al (2011) Differential gene expression profiling of human bone marrow-derived mesenchymal stem cells during adipogenic development. BMC. Genomics 12:461

    CAS  PubMed  Google Scholar 

  • Moreb JS, Ucar D, Han S et al (2012) The enzymatic activity of human aldehyde dehydrogenases 1A2 and 2 (ALDH1A2 and ALDH2) is detected by Aldefluor, inhibited by diethylaminobenzaldehyde and has significant effects on cell proliferation and drug resistance. Chem Biol Interact 195:52–60

    Article  CAS  PubMed  Google Scholar 

  • Muzio G, Maggiora M, Paiuzzi E, Oraldi M, Canuto RA (2012) Aldehyde dehydrogenases and cell proliferation. Free Radic Biol Med 52:735–746

    Article  CAS  PubMed  Google Scholar 

  • Nagamura-Inoue T, He H (2014) Umbilical cord-derived mesenchymal stem cells: their advantages and potential clinical utility. World J Stem Cells 6:195–202

    Article  PubMed  PubMed Central  Google Scholar 

  • Najar M, Raicevic G, Boufker HI et al (2010a) Mesenchymal stromal cells use PGE2 to modulate activation and proliferation of lymphocyte subsets: combined comparison of adipose tissue, Wharton’s jelly and bone marrow sources. Cell Immunol 264:171–179

    Article  CAS  PubMed  Google Scholar 

  • Najar M, Raicevic G, Id Boufker H et al (2010b) Modulated expression of adhesion molecules and galectin-1: role during mesenchymal stromal cell immunoregulatory functions. Exp Hematol 38:922–932

    Article  CAS  PubMed  Google Scholar 

  • Najar M, Raicevic G, Jebbawi F et al (2012) Characterization and functionality of the CD200-CD200R system during mesenchymal stromal cell interactions with T-lymphocytes. Immunol Lett 146:50–56

    Article  CAS  PubMed  Google Scholar 

  • Najar M, Raicevic G, Fayyad-Kazan H et al (2015) Bone marrow mesenchymal stromal cells induce proliferative, cytokinic and molecular changes during the T cell response: the importance of the IL-10/CD210 axis. Stem Cell Rev 11:442–452

    Article  CAS  Google Scholar 

  • Najar M, Raicevic G, Andre T et al (2016a) Mesenchymal stromal cells from the foreskin: tissue isolation, cell characterization and immunobiological properties. Cytotherapy 18:320–335

    Article  CAS  PubMed  Google Scholar 

  • Najar M, Raicevic G, Crompot E et al (2016b) The immunomodulatory potential of mesenchymal stromal cells: a story of a regulatory network. J Immunother 39:45–59

    Article  CAS  PubMed  Google Scholar 

  • Nauta TD, van Hinsbergh VWM, Koolwijk P (2014) Hypoxic signaling during tissue repair and regenerative medicine. Int J Mol Sci 15:19791–19815

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • New SEP, Alvarez-Gonzalez C, Vagaska B et al (2015) A matter of identity—phenotype and differentiation potential of human somatic stem cells. Stem Cell Res 15:1–13

    Article  CAS  PubMed  Google Scholar 

  • Ohnishi S, Yasuda T, Kitamura S, Nagaya N (2007) Effect of hypoxia on gene expression of bone marrow-derived mesenchymal stem cells and mononuclear cells. Stem Cells 25:1166–1177

    Article  CAS  PubMed  Google Scholar 

  • Pontikoglou C, Langonne A, Ba MA et al (2016) CD200 expression in human cultured bone marrow mesenchymal stem cells is induced by pro-osteogenic and pro-inflammatory cues. J Cell Mol Med 20:655–665

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Purandare B, Teklemariam T, Zhao L, Hantash BM (2014) Temporal HLA profiling and immunomodulatory effects of human adult bone marrow- and adipose-derived mesenchymal stem cells. Regen Med 9:67–79

    Article  CAS  PubMed  Google Scholar 

  • Rasini V, Dominici M, Kluba T et al (2013) Mesenchymal stromal/stem cells markers in the human bone marrow. Cytotherapy 15:292–306

    Article  CAS  PubMed  Google Scholar 

  • Reppel L, Schiavi J, Charif N et al (2015) Chondrogenic induction of mesenchymal stromal/stem cells from Wharton’s jelly embedded in alginate hydrogel and without added growth factor: an alternative stem cell source for cartilage tissue engineering. Stem Cell Res Ther 6:260

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rizk M, Aziz J, Shorr R, Allan DS (2017) Cell-based therapy using umbilical cord blood for novel indications in regenerative therapy and immune modulation: an updated systematic scoping review of the literature. Biol Blood Marrow Transplant 23:1607–1613

    Article  PubMed  Google Scholar 

  • Rodriguez-Torres M, Allan AL (2016) Aldehyde dehydrogenase as a marker and functional mediator of metastasis in solid tumors. Clin Exp Metastasis 33:97–113

    Article  CAS  PubMed  Google Scholar 

  • Rohban R, Pieber TR (2017) Mesenchymal stem and progenitor cells in regeneration: tissue specificity and regenerative potential. Stem Cells Int 2017:5173732

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ronziere MC, Perrier E, Mallein-Gerin F, Freyria AM (2010) Chondrogenic potential of bone marrow- and adipose tissue-derived adult human mesenchymal stem cells. Biomed Mater Eng 20:145–158

    CAS  PubMed  Google Scholar 

  • Sharpe ME, Morton D, Rossi A (2012) Nonclinical safety strategies for stem cell therapies. Toxicol Appl Pharmacol 262:223–231

    Article  CAS  PubMed  Google Scholar 

  • Sherman SE, Kuljanin M, Cooper TT et al (2017) High aldehyde dehydrogenase activity identifies a subset of human mesenchymal stromal cells with vascular regenerative potential. Stem Cells 35:1542–1553

    Article  CAS  PubMed  Google Scholar 

  • Stanko P, Kaiserova K, Altanerova V, Altaner C (2014) Comparison of human mesenchymal stem cells derived from dental pulp, bone marrow, adipose tissue, and umbilical cord tissue by gene expression. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 158:373–377

    Article  PubMed  Google Scholar 

  • Steimle A, Frick JS (2016) Molecular mechanisms of induction of tolerant and tolerogenic intestinal dendritic cells in mice. J Immunol Res 2016:1958650

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Storms RW, Trujillo AP, Springer JB et al (1999) Isolation of primitive human hematopoietic progenitors on the basis of aldehyde dehydrogenase activity. Proc Natl Acad Sci USA 96:9118–9123

    Article  CAS  PubMed  Google Scholar 

  • Su Y, Shen X, Chen J et al (2017) Differentially expressed genes in PPARgamma-deficient MSCs. Mol Cell Endocrinol

  • Torensma R, Prins HJ, Schrama E et al (2013) The impact of cell source, culture methodology, culture location, and individual donors on gene expression profiles of bone marrow-derived and adipose-derived stromal cells. Stem Cells Dev 22:1086–1096

    Article  CAS  PubMed  Google Scholar 

  • Van Pham P, Truong NC, Le PT-B et al (2016) Isolation and proliferation of umbilical cord tissue derived mesenchymal stem cells for clinical applications. Cell Tissue Bank 17:289–302

    Article  CAS  PubMed  Google Scholar 

  • Vella JB, Thompson SD, Bucsek MJ, Song M, Huard J (2011) Murine and human myogenic cells identified by elevated aldehyde dehydrogenase activity: implications for muscle regeneration and repair. PLoS ONE 6:e29226

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vishnubalaji R, Manikandan M, Al-Nbaheen M et al (2012) In vitro differentiation of human skin-derived multipotent stromal cells into putative endothelial-like cells. BMC Dev Biol 12:7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vulcano F, Milazzo L, Ciccarelli C et al (2016) Wharton’s jelly mesenchymal stromal cells have contrasting effects on proliferation and phenotype of cancer stem cells from different subtypes of lung cancer. Exp Cell Res 345:190–198

    Article  CAS  PubMed  Google Scholar 

  • Wajid N, Naseem R, Anwar SS et al (2015) The effect of gestational diabetes on proliferation capacity and viability of human umbilical cord-derived stromal cells. Cell Tissue Bank 16:389–397

    Article  CAS  PubMed  Google Scholar 

  • Walecka I, Gil-Kulik P, Krzyzanowski A et al (2017) Phenotypic characterization of adherent cells population CD34 + CD90 + CD105 + derived from Wharton’s jelly. Med Sci Monit 23:1886–1895

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang J, Zhu Z, Huang Y et al (2014) The subtype CD200-positive, chorionic mesenchymal stem cells from the placenta promote regeneration of human hepatocytes. Biotechnol Lett 36:1335–1341

    Article  CAS  PubMed  Google Scholar 

  • Wu CC, Liu FL, Sytwu HK, Tsai CY, Chang DM (2016) CD146 + mesenchymal stem cells display greater therapeutic potential than CD146-cells for treating collagen-induced arthritis in mice. Stem Cell Res Ther 7:23

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang ZX, Han ZB, Ji YR et al (2013) CD106 identifies a subpopulation of mesenchymal stem cells with unique immunomodulatory properties. PLoS ONE 8:e59354

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zajdel A, Kalucka M, Kokoszka-Mikolaj E, Wilczok A (2017) Osteogenic differentiation of human mesenchymal stem cells from adipose tissue and Wharton’s jelly of the umbilical cord. Acta Biochim Pol 64:365–369

    Article  CAS  PubMed  Google Scholar 

  • Zimmerlin L, Park TS, Zambidis ET, Donnenberg VS, Donnenberg AD (2013) Mesenchymal stem cell secretome and regenerative therapy after cancer. Biochimie 95:2235–2245

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank “Télévie” (FNRS) for the financial support.

Funding

Mehdi Najar is awardee of a “Télévie” post-doctoral fellowship and Emerence Crompot is awardee of Ph.D. Grant “Télévie” (F.N.R.S).

Author information

Authors and Affiliations

Authors

Contributions

Conceived and designed the experiments: MN, LL. Performed the experiments: MN, LL. Analyzed the data: EC, MN, LD. Contributed reagents/materials/analysis tools: LD, LVG. Wrote the paper: EC, MN, LL.

Corresponding author

Correspondence to Emerence Crompot.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical standard

This study was approved by the Bordet Institute Ethics Committee (Belgium) and conducted in accordance with the Declaration of Helsinki (1964). All donors and/or their parents gave written informed consent.

Availability of data and materials

All data generated or analyzed during this study are included in this published article (and its supplementary information files).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Najar, M., Crompot, E., van Grunsven, L.A. et al. Aldehyde dehydrogenase activity of Wharton jelly mesenchymal stromal cells: isolation and characterization. Cytotechnology 71, 427–441 (2019). https://doi.org/10.1007/s10616-018-0283-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10616-018-0283-8

Keywords

Navigation