Skip to main content
Log in

Generation and characterization of transgenic mouse mesenchymal stem cell lines expressing hIGF-1 or hG-CSF

  • Original Article
  • Published:
Cytotechnology Aims and scope Submit manuscript

Abstract

Mesenchymal stem cells (MSC) are promising tools in the fields of cell therapy and regenerative medicine. In addition to their differentiation potential, MSC have the ability to secrete bioactive molecules that stimulate tissue regeneration. Thus, the overexpression of cytokines and growth factors may enhance the therapeutic effects of MSC. Here we generated and characterized mouse bone marrow MSC lines overexpressing hG-CSF or hIGF-1. MSC lines overexpressing hG-CSF or hIGF-1 were generated through lentiviral vector mediated gene transfer. The expression of hG-CSF or hIGF-1 genes in the clones produced was quantified by qRT-PCR, and the proteins were detected in the cell supernatants by ELISA. The cell lines displayed cell surface markers and differentiation potential into adipocytes, osteocytes and chondrocytes similar to the control MSC cell lines, indicating the conservation of their phenotype even after genetic modification. IGF-1 and G-CSF transgenic cells maintained immunosuppressive activity. Finally, we performed a comparative gene expression analysis by qRT-PCR array in the cell lines expressing hIGF-1 and hG-CSF when compared to the control cells. Our results demonstrate that the cell lines generated may be useful tools for cell therapy and are suitable for testing in disease models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Baraniak PR, McDevitt TC (2010) Stem cell paracrine actions and tissue regeneration. Regen Med 5:121–143. doi:10.2217/rme.09.74

    Article  Google Scholar 

  • Caplan AI, Dennis JE (2006) Mesenchymal stem cells as trophic mediators. J Cell Biochem 98:1076–1084. doi:10.1002/jcb.20886

    Article  CAS  Google Scholar 

  • Friedenstein AJ, Piatetzky-Shapiro II et al (1966) Osteogenesis in transplants of bone marrow cells. J Embryol Exp Morphol 16:381–390

    CAS  Google Scholar 

  • Guo Y, Liu S et al (2015) G-CSF promotes autophagy and reduces neural tissue damage after spinal cord injury in mice. Lab Invest 95:1439–1449. doi:10.1038/labinvest.2015.120

    Article  CAS  Google Scholar 

  • Haider HKh, Jiang S et al (2008) IGF-1-overexpressing mesenchymal stem cells accelerate bone marrow stem cell mobilization via paracrine activation of SDF-1alpha/CXCR4 signaling to promote myocardial repair. Circ Res 103:1300–1308

    Article  CAS  Google Scholar 

  • Harada M, Qin Y et al (2005) G-CSF prevents cardiac remodeling after myocardial infarction by activating the Jak-Stat pathway in cardiomyocytes. Nat Med 11:305–311. doi:10.1038/nm1199

    Article  CAS  Google Scholar 

  • Huang SP, Tsai RK (2014) Efficacy of granulocyte-colony stimulating factor treatment in a rat model of anterior ischemic optic neuropathy. Neural Regen Res 9:1502–1505. doi:10.4103/1673-5374.139472

    Article  Google Scholar 

  • Huang YL, Qiu RF et al (2012) Effects of insulin-like growth factor-1 on the properties of mesenchymal stem cells in vitro. J Zhejiang Univ Sci B 13:20–28

    Article  CAS  Google Scholar 

  • Ieishi K, Nomura M et al (2007) The effect of G-CSF in a myocardial ischemia reperfusion model rat. J Med Invest 54:177–183

    Article  Google Scholar 

  • Kim N, Cho SG (2013) Clinical applications of mesenchymal stem cells. Korean J Intern Med 28:387–402. doi:10.3904/kjim.2013.28.4.387

    Article  Google Scholar 

  • Le Blanc K, Mougiakakos D (2012) Multipotent mesenchymal stromal cells and the innate immune system. Nat Rev Immunol 12:383–396. doi:10.1038/nri3209

    Article  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(−∆∆C(T)) method. Methods 25:402–408. doi:10.1006/meth.2001.1262

    Article  CAS  Google Scholar 

  • Lunn JS, Sakowski SA et al (2015) Autocrine production of IGF-I increases stem cell-mediated neuroprotection. Stem Cells 33:1480–1489. doi:10.1002/stem.1933

    Article  CAS  Google Scholar 

  • Macambira SG, Vasconcelos JF et al (2009) Granulocyte colony-stimulating factor treatment in chronic Chagas disease: preservation and improvement of cardiac structure and function. FASEB J 23:3843–3850. doi:10.1096/fj.09-137869

    Article  CAS  Google Scholar 

  • McGinley LM, Sims E et al (2016) Human cortical neural stem cells expressing insulin-like growth factor-I: a novel cellular therapy for Alzheimer’s disease. Stem Cells Transl Med 5:379–391. doi:10.5966/sctm.2015-0103

    Article  CAS  Google Scholar 

  • Najar M, Raicevic G et al (2016) The immunomodulatory potential of mesenchymal stromal cells: a story of a regulatory network. J Immunother 39:45–59. doi:10.1097/CJI.0000000000000108

    Article  CAS  Google Scholar 

  • Nouri FS, Wang X et al (2015) Genetically engineered theranostic mesenchymal stem cells for the evaluation of the anticancer efficacy of enzyme/prodrug systems. J Control Release 200:179–187. doi:10.1016/j.jconrel.2015.01.003

    Article  CAS  Google Scholar 

  • Parekkadan B, van Poll D et al (2007) Mesenchymal stem cell-derived molecules reverse fulminant hepatic failure. PLoS ONE 2:e941. doi:10.1371/journal.pone.0000941

    Article  Google Scholar 

  • Phinney DG, Prockop DJ (2007) Concise review: mesenchymal stem/multipotent stromal cells: the state of transdifferentiation and modes of tissue repair—current views. Stem Cells 25:2896–2902. doi:10.1634/stemcells.2007-0637

    Article  Google Scholar 

  • Pittenger MF, Mackay AM et al (1999) Multilineage potential of adult human mesenchymal stem cells. Science 284:143–147

    Article  CAS  Google Scholar 

  • Ponte AL, Ribeiro-Fleury T et al (2012) Granulocyte-colony-stimulating factor stimulation of bone marrow mesenchymal stromal cells promotes CD34+ cell migration via a matrix metalloproteinase-2-dependent mechanism. Stem Cells Dev 21:3162–3172. doi:10.1089/scd.2012.0048

    Article  CAS  Google Scholar 

  • Porada CD, Stem C et al (2013) Gene therapy: the promise of a permanent cure. N C Med J 74:526–529

    Google Scholar 

  • Prockop DJ, Oh JY (2012) Mesenchymal stem/stromal cells (MSCs): role as guardians of inflammation. Mol Ther 20:14–20. doi:10.1038/mt.2011.211

    Article  CAS  Google Scholar 

  • Reiser J, Zhang XY et al (2005) Potential of mesenchymal stem cells in gene therapy approaches for inherited and acquired diseases. Expert Opin Biol Ther 5:1571–1584. doi:10.1517/14712598.5.12.1571

    Article  CAS  Google Scholar 

  • Schinköthe T, Bloch W et al (2008) In vitro secreting profile of human mesenchymal stem cells. Stem Cells Dev 17:199–206. doi:10.1089/scd.2007.0175

    Article  Google Scholar 

  • Schmidt MB, Chen EH et al (2006) A review of the effects of insulin-like growth factor and platelet derived growth factor on in vivo cartilage healing and repair. Osteoarthr Cartil 14:403–412. doi:10.1016/j.joca.2005.10.011

    Article  CAS  Google Scholar 

  • Song YH, Song JL et al (2013) The therapeutic potential of IGF-I in skeletal muscle repair. Trends Endocrinol Metab 24:310–319. doi:10.1016/j.tem.2013.03.004

    Article  CAS  Google Scholar 

  • Tiscornia G, Singer O et al (2006) Production and purification of lentiviral vectors. Nat Protoc 1:241–245. doi:10.1038/nprot.2006.37

    Article  CAS  Google Scholar 

  • Tomasoni S, Longaretti L et al (2013) Transfer of growth factor receptor mRNA via exosomes unravels the regenerative effect of mesenchymal stem cells. Stem Cells Dev 22:772–780. doi:10.1089/scd.2012.0266

    Article  CAS  Google Scholar 

  • Wagner J, Kean T et al (2009) Optimizing mesenchymal stem cell-based therapeutics. Curr Opin Biotechnol 20:531–536. doi:10.1016/j.copbio.2009.08.009

    Article  CAS  Google Scholar 

  • Wang S, Qu X et al (2012) Clinical applications of mesenchymal stem cells. J Hematol Oncol 5:19. doi:10.1186/1756-8722-5-19

    Article  Google Scholar 

  • Wang Y, Chen X et al (2014) Plasticity of mesenchymal stem cells in immunomodulation: pathological and therapeutic implications. Nat Immunol 15:1009–1016. doi:10.1038/ni.3002

    Article  CAS  Google Scholar 

  • White SM, Renda M et al (1999) Lentivirus vectors using human and simian immunodeficiency virus elements. J Virol 73:2832–2840

    CAS  Google Scholar 

  • Xinaris C, Morigi M et al (2013) A novel strategy to enhance mesenchymal stem cell migration capacity and promote tissue repair in an injury specific fashion. Cell Transplant 22:423–436

    Article  CAS  Google Scholar 

  • Yang Q, Yang Y et al (2016) Effects of granulocyte colony-stimulating factor on patients with liver failure: a meta-analysis. J Clin Transl Hepatol 4:90–96. doi:10.14218/JCTH.2016.00012

    Google Scholar 

  • Yu H, Rohan T (2000) Role of the insulin-like growth factor family in cancer development and progression. J Natl Cancer Inst 92:1472–1489

    Article  CAS  Google Scholar 

  • Zhu M, Feng Y et al (2015) Human cerebrospinal fluid regulates proliferation and migration of stem cells through insulin-like growth factor-1. Stem Cells Dev 24:160–171

    Article  CAS  Google Scholar 

  • Zou J, Maeder ML et al (2009) Gene targeting of a disease-related gene in human induced pluripotent stem and embryonic stem cells. Cell Stem Cell 5:97–110. doi:10.1016/j.stem.2009.05.023

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by The National Council for Scientific and Technological Development (CNPq), The Foundation of Support for Research of the State of Bahia (FAPESB), and Funding Authority for Studies and Projects (FINEP).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Milena B. P. Soares.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gonçalves, G.V.M., Silva, D.N., Carvalho, R.H. et al. Generation and characterization of transgenic mouse mesenchymal stem cell lines expressing hIGF-1 or hG-CSF . Cytotechnology 70, 577–591 (2018). https://doi.org/10.1007/s10616-017-0131-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10616-017-0131-2

Keywords

Navigation