Advertisement

Cytotechnology

, Volume 70, Issue 2, pp 577–591 | Cite as

Generation and characterization of transgenic mouse mesenchymal stem cell lines expressing hIGF-1 or hG-CSF

  • Gabrielle V. M. Gonçalves
  • Daniela N. Silva
  • Rejane H. Carvalho
  • Bruno S. F. Souza
  • Kátia Nunes da Silva
  • Juliana F. Vasconcelos
  • Bruno D. Paredes
  • Carolina K. V. Nonaka
  • Ricardo Ribeiro-dos-Santos
  • Milena B. P. Soares
Original Article

Abstract

Mesenchymal stem cells (MSC) are promising tools in the fields of cell therapy and regenerative medicine. In addition to their differentiation potential, MSC have the ability to secrete bioactive molecules that stimulate tissue regeneration. Thus, the overexpression of cytokines and growth factors may enhance the therapeutic effects of MSC. Here we generated and characterized mouse bone marrow MSC lines overexpressing hG-CSF or hIGF-1. MSC lines overexpressing hG-CSF or hIGF-1 were generated through lentiviral vector mediated gene transfer. The expression of hG-CSF or hIGF-1 genes in the clones produced was quantified by qRT-PCR, and the proteins were detected in the cell supernatants by ELISA. The cell lines displayed cell surface markers and differentiation potential into adipocytes, osteocytes and chondrocytes similar to the control MSC cell lines, indicating the conservation of their phenotype even after genetic modification. IGF-1 and G-CSF transgenic cells maintained immunosuppressive activity. Finally, we performed a comparative gene expression analysis by qRT-PCR array in the cell lines expressing hIGF-1 and hG-CSF when compared to the control cells. Our results demonstrate that the cell lines generated may be useful tools for cell therapy and are suitable for testing in disease models.

Keywords

Mesenchymal stem cells Growth factors G-CSF IGF-1 

Notes

Acknowledgements

This work was supported by The National Council for Scientific and Technological Development (CNPq), The Foundation of Support for Research of the State of Bahia (FAPESB), and Funding Authority for Studies and Projects (FINEP).

References

  1. Baraniak PR, McDevitt TC (2010) Stem cell paracrine actions and tissue regeneration. Regen Med 5:121–143. doi: 10.2217/rme.09.74 CrossRefGoogle Scholar
  2. Caplan AI, Dennis JE (2006) Mesenchymal stem cells as trophic mediators. J Cell Biochem 98:1076–1084. doi: 10.1002/jcb.20886 CrossRefGoogle Scholar
  3. Friedenstein AJ, Piatetzky-Shapiro II et al (1966) Osteogenesis in transplants of bone marrow cells. J Embryol Exp Morphol 16:381–390Google Scholar
  4. Guo Y, Liu S et al (2015) G-CSF promotes autophagy and reduces neural tissue damage after spinal cord injury in mice. Lab Invest 95:1439–1449. doi: 10.1038/labinvest.2015.120 CrossRefGoogle Scholar
  5. Haider HKh, Jiang S et al (2008) IGF-1-overexpressing mesenchymal stem cells accelerate bone marrow stem cell mobilization via paracrine activation of SDF-1alpha/CXCR4 signaling to promote myocardial repair. Circ Res 103:1300–1308CrossRefGoogle Scholar
  6. Harada M, Qin Y et al (2005) G-CSF prevents cardiac remodeling after myocardial infarction by activating the Jak-Stat pathway in cardiomyocytes. Nat Med 11:305–311. doi: 10.1038/nm1199 CrossRefGoogle Scholar
  7. Huang SP, Tsai RK (2014) Efficacy of granulocyte-colony stimulating factor treatment in a rat model of anterior ischemic optic neuropathy. Neural Regen Res 9:1502–1505. doi: 10.4103/1673-5374.139472 CrossRefGoogle Scholar
  8. Huang YL, Qiu RF et al (2012) Effects of insulin-like growth factor-1 on the properties of mesenchymal stem cells in vitro. J Zhejiang Univ Sci B 13:20–28CrossRefGoogle Scholar
  9. Ieishi K, Nomura M et al (2007) The effect of G-CSF in a myocardial ischemia reperfusion model rat. J Med Invest 54:177–183CrossRefGoogle Scholar
  10. Kim N, Cho SG (2013) Clinical applications of mesenchymal stem cells. Korean J Intern Med 28:387–402. doi: 10.3904/kjim.2013.28.4.387 CrossRefGoogle Scholar
  11. Le Blanc K, Mougiakakos D (2012) Multipotent mesenchymal stromal cells and the innate immune system. Nat Rev Immunol 12:383–396. doi: 10.1038/nri3209 CrossRefGoogle Scholar
  12. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(−∆∆C(T)) method. Methods 25:402–408. doi: 10.1006/meth.2001.1262 CrossRefGoogle Scholar
  13. Lunn JS, Sakowski SA et al (2015) Autocrine production of IGF-I increases stem cell-mediated neuroprotection. Stem Cells 33:1480–1489. doi: 10.1002/stem.1933 CrossRefGoogle Scholar
  14. Macambira SG, Vasconcelos JF et al (2009) Granulocyte colony-stimulating factor treatment in chronic Chagas disease: preservation and improvement of cardiac structure and function. FASEB J 23:3843–3850. doi: 10.1096/fj.09-137869 CrossRefGoogle Scholar
  15. McGinley LM, Sims E et al (2016) Human cortical neural stem cells expressing insulin-like growth factor-I: a novel cellular therapy for Alzheimer’s disease. Stem Cells Transl Med 5:379–391. doi: 10.5966/sctm.2015-0103 CrossRefGoogle Scholar
  16. Najar M, Raicevic G et al (2016) The immunomodulatory potential of mesenchymal stromal cells: a story of a regulatory network. J Immunother 39:45–59. doi: 10.1097/CJI.0000000000000108 CrossRefGoogle Scholar
  17. Nouri FS, Wang X et al (2015) Genetically engineered theranostic mesenchymal stem cells for the evaluation of the anticancer efficacy of enzyme/prodrug systems. J Control Release 200:179–187. doi: 10.1016/j.jconrel.2015.01.003 CrossRefGoogle Scholar
  18. Parekkadan B, van Poll D et al (2007) Mesenchymal stem cell-derived molecules reverse fulminant hepatic failure. PLoS ONE 2:e941. doi: 10.1371/journal.pone.0000941 CrossRefGoogle Scholar
  19. Phinney DG, Prockop DJ (2007) Concise review: mesenchymal stem/multipotent stromal cells: the state of transdifferentiation and modes of tissue repair—current views. Stem Cells 25:2896–2902. doi: 10.1634/stemcells.2007-0637 CrossRefGoogle Scholar
  20. Pittenger MF, Mackay AM et al (1999) Multilineage potential of adult human mesenchymal stem cells. Science 284:143–147CrossRefGoogle Scholar
  21. Ponte AL, Ribeiro-Fleury T et al (2012) Granulocyte-colony-stimulating factor stimulation of bone marrow mesenchymal stromal cells promotes CD34+ cell migration via a matrix metalloproteinase-2-dependent mechanism. Stem Cells Dev 21:3162–3172. doi: 10.1089/scd.2012.0048 CrossRefGoogle Scholar
  22. Porada CD, Stem C et al (2013) Gene therapy: the promise of a permanent cure. N C Med J 74:526–529Google Scholar
  23. Prockop DJ, Oh JY (2012) Mesenchymal stem/stromal cells (MSCs): role as guardians of inflammation. Mol Ther 20:14–20. doi: 10.1038/mt.2011.211 CrossRefGoogle Scholar
  24. Reiser J, Zhang XY et al (2005) Potential of mesenchymal stem cells in gene therapy approaches for inherited and acquired diseases. Expert Opin Biol Ther 5:1571–1584. doi: 10.1517/14712598.5.12.1571 CrossRefGoogle Scholar
  25. Schinköthe T, Bloch W et al (2008) In vitro secreting profile of human mesenchymal stem cells. Stem Cells Dev 17:199–206. doi: 10.1089/scd.2007.0175 CrossRefGoogle Scholar
  26. Schmidt MB, Chen EH et al (2006) A review of the effects of insulin-like growth factor and platelet derived growth factor on in vivo cartilage healing and repair. Osteoarthr Cartil 14:403–412. doi: 10.1016/j.joca.2005.10.011 CrossRefGoogle Scholar
  27. Song YH, Song JL et al (2013) The therapeutic potential of IGF-I in skeletal muscle repair. Trends Endocrinol Metab 24:310–319. doi: 10.1016/j.tem.2013.03.004 CrossRefGoogle Scholar
  28. Tiscornia G, Singer O et al (2006) Production and purification of lentiviral vectors. Nat Protoc 1:241–245. doi: 10.1038/nprot.2006.37 CrossRefGoogle Scholar
  29. Tomasoni S, Longaretti L et al (2013) Transfer of growth factor receptor mRNA via exosomes unravels the regenerative effect of mesenchymal stem cells. Stem Cells Dev 22:772–780. doi: 10.1089/scd.2012.0266 CrossRefGoogle Scholar
  30. Wagner J, Kean T et al (2009) Optimizing mesenchymal stem cell-based therapeutics. Curr Opin Biotechnol 20:531–536. doi: 10.1016/j.copbio.2009.08.009 CrossRefGoogle Scholar
  31. Wang S, Qu X et al (2012) Clinical applications of mesenchymal stem cells. J Hematol Oncol 5:19. doi: 10.1186/1756-8722-5-19 CrossRefGoogle Scholar
  32. Wang Y, Chen X et al (2014) Plasticity of mesenchymal stem cells in immunomodulation: pathological and therapeutic implications. Nat Immunol 15:1009–1016. doi: 10.1038/ni.3002 CrossRefGoogle Scholar
  33. White SM, Renda M et al (1999) Lentivirus vectors using human and simian immunodeficiency virus elements. J Virol 73:2832–2840Google Scholar
  34. Xinaris C, Morigi M et al (2013) A novel strategy to enhance mesenchymal stem cell migration capacity and promote tissue repair in an injury specific fashion. Cell Transplant 22:423–436CrossRefGoogle Scholar
  35. Yang Q, Yang Y et al (2016) Effects of granulocyte colony-stimulating factor on patients with liver failure: a meta-analysis. J Clin Transl Hepatol 4:90–96. doi: 10.14218/JCTH.2016.00012 Google Scholar
  36. Yu H, Rohan T (2000) Role of the insulin-like growth factor family in cancer development and progression. J Natl Cancer Inst 92:1472–1489CrossRefGoogle Scholar
  37. Zhu M, Feng Y et al (2015) Human cerebrospinal fluid regulates proliferation and migration of stem cells through insulin-like growth factor-1. Stem Cells Dev 24:160–171CrossRefGoogle Scholar
  38. Zou J, Maeder ML et al (2009) Gene targeting of a disease-related gene in human induced pluripotent stem and embryonic stem cells. Cell Stem Cell 5:97–110. doi: 10.1016/j.stem.2009.05.023 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2017

Authors and Affiliations

  • Gabrielle V. M. Gonçalves
    • 1
  • Daniela N. Silva
    • 1
    • 2
  • Rejane H. Carvalho
    • 1
  • Bruno S. F. Souza
    • 1
    • 2
    • 3
  • Kátia Nunes da Silva
    • 1
    • 2
  • Juliana F. Vasconcelos
    • 1
    • 2
  • Bruno D. Paredes
    • 1
    • 3
  • Carolina K. V. Nonaka
    • 1
  • Ricardo Ribeiro-dos-Santos
    • 1
    • 3
  • Milena B. P. Soares
    • 1
    • 2
    • 3
  1. 1.Center for Biotechnology and Cell TherapyHospital São RafaelSalvadorBrazil
  2. 2.Gonçalo Moniz Institute, Oswaldo Cruz Foundation (FIOCRUZ)SalvadorBrazil
  3. 3.National Institute of Science and Technology for Regenerative MedicineRio de JaneiroBrazil

Personalised recommendations