Skip to main content
Log in

Depletion of nucleoporins from HeLa nuclear pore complexes to facilitate the production of ghost pores for in vitro reconstitution

  • Method in Cell Science
  • Published:
Cytotechnology Aims and scope Submit manuscript

Abstract

During cell division, Nuclear Pore Complexes (NPCs) are broken down into protein subcomplexes that are the basis for reassembly in daughter cells. This is the driving force for the establishment of an in vitro reconstitution system to study aspects of NPC reassembly. In this study, nuclear envelope (NE) was isolated from HeLa cells. NE was treated with increasing concentrations of heparin to extract nucleoporins (Nups) for the production of “ghost pores” which are pores severely deficient in Nups, while still containing Pore Membrane proteins (POM) needed to anchor the NPC. Ghost pores have been subjected to incubation with previously stripped Nups and some re-binding has been shown to occur by western blot analysis. This in vitro assay provides a powerful tool to investigate the protein–protein interactions of NPC reassembly from a human cell line. Through a better understanding of the process of NPC reassembly, we can continue to piece together the puzzle of this macromolecular structure. It is most advantageous to establish a straightforward reconstitution procedure at the mammalian level.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

NE:

Nuclear envelope

NPC:

Nuclear pore complex

Nups:

Nucleoporins

FG-Nup:

Phenylalanine–glycine nucleoporins

CE:

Cell extract

INM:

Inner nuclear membrane

ONM:

Outer nuclear membrane

POM:

Pore membrane

EM:

Electron microscopy

SDS-PAGE:

Sodium dodecyl sulfate polyacrylamide gel electrophoresis

PMSF:

Phenylmethylsulfonyl fluoride

PBS:

Phosphate buffered saline

DTT:

Dithiothreitol

TEA:

Triethanolamine

References

  • Alber F, Dokudovskaya S, Veenhoff LM, Zhang W, Kipper J, Devos D, Suprapto A, Karni-Schmidt O, Williams R, Chait BT, Sali A, Rout MP (2007) The molecular architecture of the nuclear pore complex. Nature 450:695–701

    Google Scholar 

  • Anderson DJ, Hetzer MW (2008) The life cycle of the metazoan nuclear envelope. Curr Opin Cell Biol 20:386–392

    Article  CAS  Google Scholar 

  • Beck M, Forster F, Ecke M, Plitzko JM, Melchior F, Gerisch G, Baumeister W, Medalia O (2004) Nuclear pore complex structure and dynamics revealed by cryoelectron tomography. Science 306:1387–1390

    Article  CAS  Google Scholar 

  • Beck M, Lucic V, Forster F, Baumeister W, Medalia O (2007) Snapshots of nuclear pore complexes in action captured by cryo-electron tomography. Nature 449:611–615

    Article  CAS  Google Scholar 

  • Belgareh N, Rabut G, Bai SW, van Overbeek M, Beaudouin J, Daigle N, Zatsepina OV, Pasteau F, Labas V, Fromont-Racine M, Ellenberg J, Doye V ( 2001) An evolutionarily conserved NPC subcomplex, which redistributes in part to kinetochores in mammalian cells. J Cell Biol 154:1147–1160

    Google Scholar 

  • Bilokapic S, Schwartz TU (2012) 3D ultrastructure of the nuclear pore complex. Curr Opin Cell Biol 24:86–91

    Article  CAS  Google Scholar 

  • Blethrow JD, Glavy JS, Morgan DO, Shokat KM (2008) Covalent capture of kinase-specific phosphopeptides reveals Cdk1-cyclin B substrates. Proc Natl Acad Sci U S A 105:1442–1447

    Article  CAS  Google Scholar 

  • Blobel G, Potter VR (1966a) Nuclei from rat liver: isolation method that combines purity with high yield. Science 154:1662–1665

    Article  CAS  Google Scholar 

  • Blobel G, Potter VR (1966b) Relation of ribonuclease and ribonuclease inhibitor to the isolation of polysomes from rat liver. Proc Natl Acad Sci USA 55:1283–1288

    Article  CAS  Google Scholar 

  • Boehmer T, Enninga J, Dales S, Blobel G, Zhong H (2003) Depletion of a single nucleoporin, Nup107, prevents the assembly of a subset of nucleoporins into the nuclear pore complex. Proc Natl Acad Sci USA 100:981–985

    Article  CAS  Google Scholar 

  • Boehmer T, Jeudy S, Berke IC, Schwartz TU (2008) Structural and functional studies of Nup107/Nup133 interaction and its implications for the architecture of the nuclear pore complex. Mol Cell 30:721–731

    Article  CAS  Google Scholar 

  • Bornens M, Courvalin JC (1978) Isolation of nuclear envelopes with polyanions. J Cell Biol 76:191–206

    Article  CAS  Google Scholar 

  • Brohawn SG, Partridge JR, Whittle JR, Schwartz TU (2009) The nuclear pore complex has entered the atomic age. Structure 17:1156–1168

    Article  CAS  Google Scholar 

  • Chardonnet Y, Dales S (1970a) Early events in the interaction of adenoviruses with HeLa cells. I. Penetration of type 5 and intracellular release of the DNA genome. Virology 40:462–477

    Article  CAS  Google Scholar 

  • Chardonnet Y, Dales S (1970b) Early events in the interaction of adenoviruses with HeLa cells. II. Comparative observations on the penetration of types 1, 5, 7, and 12. Virology 40:478–485

    Article  CAS  Google Scholar 

  • Chardonnet Y, Dales S (1972) Early events in the interaction of adenoviruses with HeLa cells. 3. Relationship between an ATPase activity in nuclear envelopes and transfer of core material: a hypothesis. Virology 48:342–359

    Article  CAS  Google Scholar 

  • Cristea IM, Williams R, Chait BT, Rout MP (2005) Fluorescent proteins as proteomic probes. Mol Cell Proteomics 4:1933–1941

    Article  CAS  Google Scholar 

  • Cronshaw JM, Krutchinsky AN, Zhang W, Chait BT, Matunis MJ (2002) Proteomic analysis of the mammalian nuclear pore complex. J Cell Biol 158:915–927

    Article  CAS  Google Scholar 

  • D’Angelo MA, Anderson DJ, Richard E, Hetzer MW (2006) Nuclear pores form de novo from both sides of the nuclear envelope. Science 312:440–443

    Article  Google Scholar 

  • Davis LI, Blobel G (1986) Identification and characterization of a nuclear pore complex protein. Cell 45:699–709

    Article  CAS  Google Scholar 

  • Davis LI, Blobel G (1987) Nuclear pore complex contains a family of glycoproteins that includes p62: glycosylation through a previously unidentified cellular pathway. Proc Natl Acad Sci USA 84:7552–7556

    Article  CAS  Google Scholar 

  • Doucet CM, Hetzer MW (2010) Nuclear pore biogenesis into an intact nuclear envelope. Chromosoma 119:469–477

    Article  Google Scholar 

  • Doye V (2011) Mitotic Phosphorylation of Nucleoporins: dismantling NPCs and Beyond. Dev Cell 20:281–282

    Article  CAS  Google Scholar 

  • Ellenberg J, Siggia ED, Moreira JE, Smith CL, Presley JF, Worman HJ, Lippincott-Schwartz J (1997) Nuclear membrane dynamics and reassembly in living cells: targeting of an inner nuclear membrane protein in interphase and mitosis. J Cell Biol 138:1193–1206

    Article  CAS  Google Scholar 

  • Fontoura BM, Blobel G, Matunis MJ (1999) A conserved biogenesis pathway for nucleoporins: proteolytic processing of a 186-kilodalton precursor generates Nup98 and the novel nucleoporin, Nup96. J Cell Biol 144:1097–1112

    Article  CAS  Google Scholar 

  • Funakoshi T, Maeshima K, Yahata K, Sugano S, Imamoto F, Imamoto N (2007) Two distinct human POM121 genes: requirement for the formation of nuclear pore complexes. FEBS Lett 581:4910–4916

    Article  CAS  Google Scholar 

  • Funakoshi T, Clever M, Watanabe A, Imamoto N (2011) Localization of Pom121 to the inner nuclear membrane is required for an early step of interphase nuclear pore complex assembly. Mol Biol Cell 22:1058–1069

    Article  CAS  Google Scholar 

  • Glavy JS, Krutchinsky AN, Cristea IM, Berke IC, Boehmer T, Blobel G, Chait BT (2007) Cell-cycle-dependent phosphorylation of the nuclear pore Nup107-160 subcomplex. Proc Natl Acad Sci USA 104:3811–3816

    Article  CAS  Google Scholar 

  • Hetzer MW (2010) The nuclear envelope. Cold Spring Harb Perspect Biol 2:a000539

    Article  Google Scholar 

  • Hetzer MW, Walther TC, Mattaj IW (2005) Pushing the envelope: structure, function, and dynamics of the nuclear periphery. Ann Rev Cell Dev Biol 21:347–380

    Article  CAS  Google Scholar 

  • Huang S (2005) Nucleogenesis. The biogenesis of cellular organelles Kluwer Academic/Plenum Publishers, 127–137

  • Kampmann M, Blobel G (2009) Three-dimensional structure and flexibility of a membrane-coating module of the nuclear pore complex. Nat Struct Mol Biol 16:782–788

    Article  CAS  Google Scholar 

  • Kaur S, White TE, DiGuilio AL, Glavy JS (2010) The discovery of a Werner helicase interacting protein (WHIP) association with the nuclear pore complex. Cell Cycle 9:3106–3111

    Article  CAS  Google Scholar 

  • Kutay U, Hetzer MW (2008) Reorganization of the nuclear envelope during open mitosis. Curr Opin Cell Biol 20:669–677

    Article  CAS  Google Scholar 

  • Lim RY, Aebi U, Stoffler D (2006a) From the trap to the basket: getting to the bottom of the nuclear pore complex. Chromosoma 115:15–26

    Article  Google Scholar 

  • Lim RY, Huang NP, Koser J, Deng J, Lau KH, Schwarz-Herion K, Fahrenkrog B, Aebi U (2006b) Flexible phenylalanine-glycine nucleoporins as entropic barriers to nucleocytoplasmic transport. Proc Natl Acad Sci USA 103:9512–9517

    Article  CAS  Google Scholar 

  • Lim RY, Aebi U, Fahrenkrog B (2008) Towards reconciling structure and function in the nuclear pore complex. Histochem Cell Biol 129:105–116

    Article  CAS  Google Scholar 

  • Lusk CP, Blobel G, King MC (2007) Highway to the inner nuclear membrane: rules for the road. Nat Rev Mol Cell Biol 8:414–420

    Article  CAS  Google Scholar 

  • Lutzmann M, Kunze R, Buerer A, Aebi U, Hurt E (2002) Modular self-assembly of a Y-shaped multiprotein complex from seven nucleoporins. EMBO J 21:387–397

    Article  CAS  Google Scholar 

  • Maimon T, Elad N, Dahan I, Medalia O (2012) The human nuclear pore complex as revealed by cryo-electron tomography. Structure 20:998–1006

    Article  CAS  Google Scholar 

  • Matunis MJ (2006) Isolation and fractionation of rat liver nuclear envelopes and nuclear pore complexes. Methods 39:277–283

    Article  CAS  Google Scholar 

  • Muhlhausser P, Kutay U (2007) An in vitro nuclear disassembly system reveals a role for the RanGTPase system and microtubule-dependent steps in nuclear envelope breakdown. J Cell Biol 178:595–610

    Article  CAS  Google Scholar 

  • Pain D, Murakami H, Blobel G (1990) Identification of a receptor for protein import into mitochondria. Nature 347:444–449

    Article  CAS  Google Scholar 

  • Rabut G, Doye V, Ellenberg J (2004) Mapping the dynamic organization of the nuclear pore complex inside single living cells. Nat Cell Biol 6:1114–1121

    Article  CAS  Google Scholar 

  • Rout MP, Aitchison JD (2000) Pore relations: nuclear pore complexes and nucleocytoplasmic exchange. Essays Biochem 36:75–88

    CAS  Google Scholar 

  • Rout MP, Wente SR (1994) Pores for thought: nuclear pore complex proteins. Trends Cell Biol 4:357–365

    Article  CAS  Google Scholar 

  • Rout MP, Aitchison JD, Suprapto A, Hjertaas K, Zhao Y, Chait BT (2000) The yeast nuclear pore complex: composition, architecture, and transport mechanism. J Cell Biol 148:635–651

    Article  CAS  Google Scholar 

  • Schwartz TU (2005) Modularity within the architecture of the nuclear pore complex. Curr Opin Struct Biol 15:221–226

    Article  CAS  Google Scholar 

  • Shaulov L, Gruber R, Cohen I, Harel A (2011) A dominant-negative form of POM121 binds chromatin and disrupts the two separate modes of nuclear pore assembly. J Cell Sci 124:3822–3834

    Article  CAS  Google Scholar 

  • Tran EJ, Wente SR (2006) Dynamic nuclear pore complexes: life on the edge. Cell 125:1041–1053

    Article  CAS  Google Scholar 

  • Walther TC, Alves A, Pickersgill H, Loiodice I, Hetzer M, Galy V, Hülsmann BB, Köcher T, Wilm M, Allen T, Mattaj IW, Doye V (2003) The conserved Nup107-160 complex is critical for nuclear pore complex assembly. Cell 113:195–206

    Google Scholar 

Download references

Acknowledgments

We thank Thomas Cattabiani and Yifei Bao for critical reading, figure preparation and helpful discussions. We are grateful to Sarah Whitcomb and Samuel Dales for their contributions to the early portions of the project. A.L. DiGuilio, and J.S. Glavy were supported by Stevens Institute of Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joseph S. Glavy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

DiGuilio, A.L., Glavy, J.S. Depletion of nucleoporins from HeLa nuclear pore complexes to facilitate the production of ghost pores for in vitro reconstitution. Cytotechnology 65, 469–479 (2013). https://doi.org/10.1007/s10616-012-9501-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10616-012-9501-y

Keywords

Navigation