Skip to main content

Advertisement

Log in

Enhancement of antibody production by the addition of Coenzyme-Q10

  • JAACT Special Issue
  • Published:
Cytotechnology Aims and scope Submit manuscript

Abstract

Recently, there has been a growing demand for therapeutic monoclonal antibodies (MAbs) on the global market. Because therapeutic MAbs are more expensive than low-molecular-weight drugs, there have been strong demands to lower their production costs. Therefore, efficient methods to minimize the cost of goods are currently active areas of research. We have screened several enhancers of specific MAb production rate (SPR) using a YB2/0 cell line and found that coenzyme-Q10 (CoQ10) is a promising enhancer candidate. CoQ10 is well known as a strong antioxidant in the respiratory chain and is used for healthcare and other applications. Because CoQ10 is negligibly water soluble, most studies are limited by low concentrations. We added CoQ10 to a culture medium as dispersed nanoparticles at several concentrations (Q-Media) and conducted a fed-batch culture. Although the Q-Media had no effect on cumulative viable cell density, it enhanced SPR by 29%. In addition, the Q-Media had no effect on the binding or cytotoxic activity of MAbs. Q-Media also enhanced SPR with CHO and NS0 cell lines by 30%. These observations suggest that CoQ10 serves as a powerful aid in the production of MAbs by enhancing SPR without changing the characteristics of cell growth, or adversely affecting the quality or biological activity of MAbs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

MAbs:

Monoclonal antibodies

CoQ10 :

Coenzyme-Q10

Q-Media:

Culture media supplemented with dispersed nanoparticles of Q10

8OHdG:

8-hydroxy-2′-deoxyguanosine

SPR:

Specific MAb production rate (pg cell−1 d−1)

References

  • Allen MJ, Boyce JP, Trentalange MT et al (2008) Identification of novel small molecule enhancers of protein production by cultured mammalian cells. Biotechnol Bioeng 100:1193–1204

    Article  CAS  Google Scholar 

  • Arden N, Ahn S-h, Vaz W et al (2007) Chemical caspase inhibitors enhance cell culture viabilities and protein titer. Biotechnol Prog 23:506–511

    Article  CAS  Google Scholar 

  • Backliwal G, Hildinger M, Kuettel I et al (2008) Valproic acid: a viable alternative to sodium butyrate for enhancing protein expression in mammalian cell cultures. Biotechnol Bioeng 101:182–189

    Article  CAS  Google Scholar 

  • Balcarcel RR, Stephanopoulos G (2001) Rapamycin reduces hybridoma cell death and enhances monoclonal antibody production. Biotechnol Bioeng 76:1–10

    Article  CAS  Google Scholar 

  • Butler M, Huzel N, Barnabé N et al (1999) Linoleic acid improves the robustness of cells in agitated cultures. Cytotechnology 30:27–36

    Article  CAS  Google Scholar 

  • Urlaub GCA, Chasin LA (1985) Efficient cloning of single-copy genes using specialized cosmid vectors: isolation of mutant dihydrofolate reductase genes. Proc Natl Acad Sci USA 82:1189–1193

    Article  CAS  Google Scholar 

  • Carvalhal AV, Santos SS, Calado J et al (2003) Cell growth arrest by nucleotides, nucleosides and bases as a tool for improved production of recombinant proteins. Biotechnol Prog 19:69–83

    Article  CAS  Google Scholar 

  • Chello M, Mastroroberto P, Romano R et al (1996) Protection by coenzyme Q10 of tissue reperfusion injury during abdominal aortic cross-clamping. J Cardiovasc Surg (Torino) 37:229–235

    CAS  Google Scholar 

  • Coroadinha AS, Ribeiro J, Roldão A et al (2006) Effect of medium sugar source on the production of retroviral vectors for gene therapy. Biotechnol Bioeng 94:24–36

    Article  CAS  Google Scholar 

  • De Leon Gatti M, Wlaschin KF, Nissom PM et al (2007) Comparative transcriptional analysis of mouse hybridoma and recombinant Chinese hamster ovary cells undergoing butyrate treatment. J Biosci Bioeng 103:82–91

    Article  Google Scholar 

  • Gorelick C, Lopez-Jones M, Goldberg GL et al (2004) Coenzyme Q10 and lipid-related gene induction in HeLa cells. Am J Obstet Gynecol 190:1432–1434

    Article  CAS  Google Scholar 

  • Hathcock JN, Shao A (2006) Risk assessment for coenzyme Q10 (Ubiquinone). Regul Toxicol Pharmacol 45:282–288

    Article  CAS  Google Scholar 

  • Hodgson JM, Watts GF, Playford DA et al (2002) Coenzyme Q10 improves blood pressure and glycaemic control: a controlled trial in subjects with type 2 diabetes. Eur J Clin Nutr 56:1137–1142

    Article  CAS  Google Scholar 

  • Inoue Y, Fujisawa M, Kawamoto S et al (1999) Effectiveness of vitamin A acetate for enhancing the production of lung cancer specific monoclonal antibodies. Cytotechnology 31:77–83

    Article  CAS  Google Scholar 

  • Inoue Y, Fujisawa M, Shoji M et al (2000) Enhanced antibody production of human-human hybridomas by retinoic acid. Cytotechnology 33:83–88

    Article  CAS  Google Scholar 

  • Jiang Z, Sharfstein ST (2008) Sodium butyrate stimulates monoclonal antibody over-expression in CHO cells by improving gene accessibility. Biotechnol Bioeng 100:189–194

    Article  CAS  Google Scholar 

  • Kim D, Lee J, Chang H et al (2005) Effects of supplementation of various medium components on chinese hamster ovary cell cultures producing recombinant antibody. Cytotechnology 47:37–49

    Article  CAS  Google Scholar 

  • Kitano M, Hosoe K, Fukutomi N et al (2004) 28-Day repeated dose toxicity study of dried microorganism in rats. Food Chem Toxicol 42:1817–1824

    Article  CAS  Google Scholar 

  • Kogan A, Syrkin AL, Drinitsina SV et al. (1999) The antioxidant protection of the heart by coenzyme Q10 in stable stenocardia of effort. Patol Fiziol Eksp Ter:16–19

  • Konno Y, Aoki M, Takasugi H et al. (2001) Process for producing substance. WO/2003/046174

  • Konno Y, Sakai N, Sakai K et al. (2006) Method for production of substance. WO/2007/049567

  • Ling WLW, Deng L, Lepore J et al (2003) Improvement of monoclonal antibody production in hybridoma cells by dimethyl sulfoxide. Biotechnol Prog 19:158–162

    Article  CAS  Google Scholar 

  • Liu C-H, Chen L-H (2007) Enhanced recombinant M-CSF production in CHO cells by glycerol addition: model and validation. Cytotechnology 54:89–96

    Article  CAS  Google Scholar 

  • Mancuso MOD, Volpi L, Calsolaro V, Siciliano G. (2010) Coenzyme Q10 in neuromuscular and neurodegenerative disorders. Curr Drug Targets 11:111–121

    Google Scholar 

  • Martin-Lopez A, Garcia-Camacho F, Contreras-Gomez A et al (2007) Enhanced monoclonal antibody production in hybridoma cells by LPS and Anti-mIgG. Biotechnol Prog 23:1447–1453

    Article  CAS  Google Scholar 

  • Mimura Y, Lund J, Church S et al (2001) Butyrate increases production of human chimeric IgG in CHO-K1 cells whilst maintaining function and glycoform profile. J Immunol Methods 247:205–216

    Article  CAS  Google Scholar 

  • Miyazaki Y, Nishimoto S, Sasaki T et al (1998) Spermine enhances IgM productivity of human-human hybridoma HB4C5 cells and human peripheral blood lymphocytes. Cytotechnology 26:111–118

    Article  CAS  Google Scholar 

  • Müller RH, Petersen RD, Hommoss A et al (2007) Nanostructured lipid carriers (NLC) in cosmetic dermal products. Adv Drug Deliv Rev 59:522–530

    Article  Google Scholar 

  • Nakamura K, Hanibuchi M, Yano S et al (1999) Apoptosis induction of human lung cancer cell line in multicellular heterospheroids with humanized antiganglioside GM2 monoclonal antibody. Cancer Res 59:5323–5330

    CAS  Google Scholar 

  • Navas P, Fernandez-Ayala DM, Martin SF et al (2002) Ceramide-dependent caspase 3 activation is prevented by coenzyme Q from plasma membrane in serum-deprived cells. Free Radic Res 36:369–374

    Article  CAS  Google Scholar 

  • Ochiai A, Itagaki S, Kurokawa T et al (2007) Improvement in intestinal coenzyme Q10 absorption by food intake. Yakugaku Zasshi 127:1251–1254

    Article  CAS  Google Scholar 

  • Ogawa T, Konno Y, Akashi N et al. (1999) Process for producing polypeptide. WO/2001/029246

  • Oh SK, Vig P, Chua F et al (1993) Substantial overproduction of antibodies by applying osmotic pressure and sodium butyrate. Biotechnol Bioeng 42:601–610

    Article  CAS  Google Scholar 

  • Oh HK, So MK, Yang J et al (2005) Effect of N-Acetylcystein on butyrate-treated chinese hamster ovary cells to improve the production of recombinant human interferon-beta-1a. Biotechnol Prog 21:1154–1164

    Article  CAS  Google Scholar 

  • Omasa T, Furuichi K, Iemura T et al (2010) Enhanced antibody production following intermediate addition based on flux analysis in mammalian cell continuous culture. Bioprocess Biosyst Eng 33:117–125

    Article  CAS  Google Scholar 

  • Portakal O, Özkaya Ö, Erdeninal M et al (2000) Coenzyme Q10 concentrations and antioxidant status in tissues of breast cancer patients. Clin Biochem 33:279–284

    Article  CAS  Google Scholar 

  • Shields RL, Lai J, Keck R et al (2002) Lack of fucose on human IgG1 N-linked oligosaccharide improves binding to human Fcgamma RIII and antibody-dependent cellular toxicity. J Biol Chem 277:26733–26740

    Article  CAS  Google Scholar 

  • Shinkawa T, Nakamura K, Yamane N et al (2003) The absence of fucose but not the presence of galactose or bisecting N-acetylglucosamine of human IgG1 complex-type oligosaccharides shows the critical role of enhancing antibody-dependent cellular cytotoxicity. J Biol Chem 278:3466–3473

    Article  CAS  Google Scholar 

  • Shukla AA, Thömmes J (2010) Recent advances in large-scale production of monoclonal antibodies and related proteins. Trends Biotechnol 28:253–261

    Article  CAS  Google Scholar 

  • Shults CW, Flint Beal M, Song D et al (2004) Pilot trial of high dosages of coenzyme Q10 in patients with Parkinson’s disease. Exp Neurol 188:491–494

    Article  CAS  Google Scholar 

  • Singh RB, Wander GS, Rastogi A et al (1998) Randomized, double-blind placebo-controlled trial of coenzyme Q10 in patients with acute myocardial infarction. Cardiovasc Drugs Ther 12:347–353

    Article  CAS  Google Scholar 

  • Soja AM, Mortensen SA (1997) Treatment of congestive heart failure with coenzyme Q10 Illuminated by meta-analyses of clinical trials. Mol Aspects Med 18:159–168

    Article  Google Scholar 

  • Stojkovic M, Westesen K, Zakhartchenko V et al (1999) Coenzyme Q10 in submicron-sized dispersion improves development, hatching, cell proliferation, and adenosine triphosphate content of in vitro-produced bovine embryos. Biol Reprod 61:541–547

    Article  CAS  Google Scholar 

  • Sun IL, Sun EE, Crane FL (1992a) Stimulation of serum-free cell proliferation by coenzyme Q. Biochem Biophys Res Commun 189:8–13

    Article  CAS  Google Scholar 

  • Sun IL, Sun EE, Crane FL et al (1992b) Requirement for coenzyme Q in plasma membrane electron transport. Proc Natl Acad Sci USA 89:11126–11130

    Article  CAS  Google Scholar 

  • Sun IL, Sun EE, Crane FL (1995) Comparison of growth stimulation of HeLa cells, HL-60 cells, and mouse fibroblasts by coenzyme Q10. Protoplasma 184:214–219

    Article  CAS  Google Scholar 

  • Takane M, Sugano N, Iwasaki H et al (2002) New biomarker evidence of oxidative DNA damage in whole saliva from clinically healthy and periodontally diseased individuals. J Periodontol 73:551–554

    Article  CAS  Google Scholar 

  • Takenouchi S, Sugahara T (2003) Lactate dehydrogenase enhances immunoglobulin production by human hybridoma and human peripheral blood lymphocytes. Cytotechnology 42:133–143

    Article  CAS  Google Scholar 

  • Terada S, Nishimura T, Sasaki M et al (2002) Sericin, a protein derived from silkworms, accelerates the proliferation of several mammalian cell lines including a hybridoma. Cytotechnology 40:3–12

    Article  CAS  Google Scholar 

  • Tsao Y-S, Condon R, Schaefer E et al (2001) Development and improvement of a serum-free suspension process for the production of recombinant adenoviral vectors using HEK293 cells. Cytotechnology 37:189–198

    Article  CAS  Google Scholar 

  • Turunen M, Olsson J, Dallner G (2004) Metabolism and function of coenzyme Q. Biochimica et Biophysica Acta (BBA) Biomemb 1660:171–199

    Article  CAS  Google Scholar 

  • Walsh G (2006) Biopharmaceutical benchmarks 2006. Nat Biotech 24:769–776

    Article  CAS  Google Scholar 

  • Werner RG (2004) Economic aspects of commercial manufacture of biopharmaceuticals. J Biotechnol 113:171–182

    Article  CAS  Google Scholar 

  • Wurm FM (2004) Production of recombinant protein therapeutics in cultivated mammalian cells. Nat Biotechnol 22:1393–1398

    Article  CAS  Google Scholar 

  • Yegorov Y, Moldaver M, Vishnyakova K et al (2007) Enhanced control of proliferation in telomerized cells. Russ J Develop Biol 38:76–89

    Article  Google Scholar 

Download references

Acknowledgments

We would like to thank Dr. Kazuyasu Nakamura, Ms. Masako Wakitani, and Mr. Noriyuki Takahashi for their expert analysis, and Mr. Hiroshi Takasugi, Dr. Kazuhisa Uchida, Dr. Jun Yamaya, and Dr. Mitsuo Sato for helpful discussions and encouragement.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoshinobu Konno.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Konno, Y., Aoki, M., Takagishi, M. et al. Enhancement of antibody production by the addition of Coenzyme-Q10 . Cytotechnology 63, 163–170 (2011). https://doi.org/10.1007/s10616-010-9330-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10616-010-9330-9

Keywords

Navigation