, Volume 63, Issue 2, pp 163–170 | Cite as

Enhancement of antibody production by the addition of Coenzyme-Q10

  • Yoshinobu KonnoEmail author
  • Motoi Aoki
  • Masakazu Takagishi
  • Naoto Sakai
  • Masamichi Koike
  • Kaori Wakamatsu
  • Shinji Hosoi
JAACT Special Issue


Recently, there has been a growing demand for therapeutic monoclonal antibodies (MAbs) on the global market. Because therapeutic MAbs are more expensive than low-molecular-weight drugs, there have been strong demands to lower their production costs. Therefore, efficient methods to minimize the cost of goods are currently active areas of research. We have screened several enhancers of specific MAb production rate (SPR) using a YB2/0 cell line and found that coenzyme-Q10 (CoQ10) is a promising enhancer candidate. CoQ10 is well known as a strong antioxidant in the respiratory chain and is used for healthcare and other applications. Because CoQ10 is negligibly water soluble, most studies are limited by low concentrations. We added CoQ10 to a culture medium as dispersed nanoparticles at several concentrations (Q-Media) and conducted a fed-batch culture. Although the Q-Media had no effect on cumulative viable cell density, it enhanced SPR by 29%. In addition, the Q-Media had no effect on the binding or cytotoxic activity of MAbs. Q-Media also enhanced SPR with CHO and NS0 cell lines by 30%. These observations suggest that CoQ10 serves as a powerful aid in the production of MAbs by enhancing SPR without changing the characteristics of cell growth, or adversely affecting the quality or biological activity of MAbs.


Antioxidant Coenzyme-Q10 Chinese hamster ovary (CHO) 8-hydroxy-2′-deoxyguanosine Monoclonal antibodies NS0 Specific production rate YB2/0 Enhancer Productivity 



Monoclonal antibodies




Culture media supplemented with dispersed nanoparticles of Q10




Specific MAb production rate (pg cell−1 d−1)



We would like to thank Dr. Kazuyasu Nakamura, Ms. Masako Wakitani, and Mr. Noriyuki Takahashi for their expert analysis, and Mr. Hiroshi Takasugi, Dr. Kazuhisa Uchida, Dr. Jun Yamaya, and Dr. Mitsuo Sato for helpful discussions and encouragement.


  1. Allen MJ, Boyce JP, Trentalange MT et al (2008) Identification of novel small molecule enhancers of protein production by cultured mammalian cells. Biotechnol Bioeng 100:1193–1204CrossRefGoogle Scholar
  2. Arden N, Ahn S-h, Vaz W et al (2007) Chemical caspase inhibitors enhance cell culture viabilities and protein titer. Biotechnol Prog 23:506–511CrossRefGoogle Scholar
  3. Backliwal G, Hildinger M, Kuettel I et al (2008) Valproic acid: a viable alternative to sodium butyrate for enhancing protein expression in mammalian cell cultures. Biotechnol Bioeng 101:182–189CrossRefGoogle Scholar
  4. Balcarcel RR, Stephanopoulos G (2001) Rapamycin reduces hybridoma cell death and enhances monoclonal antibody production. Biotechnol Bioeng 76:1–10CrossRefGoogle Scholar
  5. Butler M, Huzel N, Barnabé N et al (1999) Linoleic acid improves the robustness of cells in agitated cultures. Cytotechnology 30:27–36CrossRefGoogle Scholar
  6. Urlaub GCA, Chasin LA (1985) Efficient cloning of single-copy genes using specialized cosmid vectors: isolation of mutant dihydrofolate reductase genes. Proc Natl Acad Sci USA 82:1189–1193CrossRefGoogle Scholar
  7. Carvalhal AV, Santos SS, Calado J et al (2003) Cell growth arrest by nucleotides, nucleosides and bases as a tool for improved production of recombinant proteins. Biotechnol Prog 19:69–83CrossRefGoogle Scholar
  8. Chello M, Mastroroberto P, Romano R et al (1996) Protection by coenzyme Q10 of tissue reperfusion injury during abdominal aortic cross-clamping. J Cardiovasc Surg (Torino) 37:229–235Google Scholar
  9. Coroadinha AS, Ribeiro J, Roldão A et al (2006) Effect of medium sugar source on the production of retroviral vectors for gene therapy. Biotechnol Bioeng 94:24–36CrossRefGoogle Scholar
  10. De Leon Gatti M, Wlaschin KF, Nissom PM et al (2007) Comparative transcriptional analysis of mouse hybridoma and recombinant Chinese hamster ovary cells undergoing butyrate treatment. J Biosci Bioeng 103:82–91CrossRefGoogle Scholar
  11. Gorelick C, Lopez-Jones M, Goldberg GL et al (2004) Coenzyme Q10 and lipid-related gene induction in HeLa cells. Am J Obstet Gynecol 190:1432–1434CrossRefGoogle Scholar
  12. Hathcock JN, Shao A (2006) Risk assessment for coenzyme Q10 (Ubiquinone). Regul Toxicol Pharmacol 45:282–288CrossRefGoogle Scholar
  13. Hodgson JM, Watts GF, Playford DA et al (2002) Coenzyme Q10 improves blood pressure and glycaemic control: a controlled trial in subjects with type 2 diabetes. Eur J Clin Nutr 56:1137–1142CrossRefGoogle Scholar
  14. Inoue Y, Fujisawa M, Kawamoto S et al (1999) Effectiveness of vitamin A acetate for enhancing the production of lung cancer specific monoclonal antibodies. Cytotechnology 31:77–83CrossRefGoogle Scholar
  15. Inoue Y, Fujisawa M, Shoji M et al (2000) Enhanced antibody production of human-human hybridomas by retinoic acid. Cytotechnology 33:83–88CrossRefGoogle Scholar
  16. Jiang Z, Sharfstein ST (2008) Sodium butyrate stimulates monoclonal antibody over-expression in CHO cells by improving gene accessibility. Biotechnol Bioeng 100:189–194CrossRefGoogle Scholar
  17. Kim D, Lee J, Chang H et al (2005) Effects of supplementation of various medium components on chinese hamster ovary cell cultures producing recombinant antibody. Cytotechnology 47:37–49CrossRefGoogle Scholar
  18. Kitano M, Hosoe K, Fukutomi N et al (2004) 28-Day repeated dose toxicity study of dried microorganism in rats. Food Chem Toxicol 42:1817–1824CrossRefGoogle Scholar
  19. Kogan A, Syrkin AL, Drinitsina SV et al. (1999) The antioxidant protection of the heart by coenzyme Q10 in stable stenocardia of effort. Patol Fiziol Eksp Ter:16–19Google Scholar
  20. Konno Y, Aoki M, Takasugi H et al. (2001) Process for producing substance. WO/2003/046174Google Scholar
  21. Konno Y, Sakai N, Sakai K et al. (2006) Method for production of substance. WO/2007/049567Google Scholar
  22. Ling WLW, Deng L, Lepore J et al (2003) Improvement of monoclonal antibody production in hybridoma cells by dimethyl sulfoxide. Biotechnol Prog 19:158–162CrossRefGoogle Scholar
  23. Liu C-H, Chen L-H (2007) Enhanced recombinant M-CSF production in CHO cells by glycerol addition: model and validation. Cytotechnology 54:89–96CrossRefGoogle Scholar
  24. Mancuso MOD, Volpi L, Calsolaro V, Siciliano G. (2010) Coenzyme Q10 in neuromuscular and neurodegenerative disorders. Curr Drug Targets 11:111–121Google Scholar
  25. Martin-Lopez A, Garcia-Camacho F, Contreras-Gomez A et al (2007) Enhanced monoclonal antibody production in hybridoma cells by LPS and Anti-mIgG. Biotechnol Prog 23:1447–1453CrossRefGoogle Scholar
  26. Mimura Y, Lund J, Church S et al (2001) Butyrate increases production of human chimeric IgG in CHO-K1 cells whilst maintaining function and glycoform profile. J Immunol Methods 247:205–216CrossRefGoogle Scholar
  27. Miyazaki Y, Nishimoto S, Sasaki T et al (1998) Spermine enhances IgM productivity of human-human hybridoma HB4C5 cells and human peripheral blood lymphocytes. Cytotechnology 26:111–118CrossRefGoogle Scholar
  28. Müller RH, Petersen RD, Hommoss A et al (2007) Nanostructured lipid carriers (NLC) in cosmetic dermal products. Adv Drug Deliv Rev 59:522–530CrossRefGoogle Scholar
  29. Nakamura K, Hanibuchi M, Yano S et al (1999) Apoptosis induction of human lung cancer cell line in multicellular heterospheroids with humanized antiganglioside GM2 monoclonal antibody. Cancer Res 59:5323–5330Google Scholar
  30. Navas P, Fernandez-Ayala DM, Martin SF et al (2002) Ceramide-dependent caspase 3 activation is prevented by coenzyme Q from plasma membrane in serum-deprived cells. Free Radic Res 36:369–374CrossRefGoogle Scholar
  31. Ochiai A, Itagaki S, Kurokawa T et al (2007) Improvement in intestinal coenzyme Q10 absorption by food intake. Yakugaku Zasshi 127:1251–1254CrossRefGoogle Scholar
  32. Ogawa T, Konno Y, Akashi N et al. (1999) Process for producing polypeptide. WO/2001/029246Google Scholar
  33. Oh SK, Vig P, Chua F et al (1993) Substantial overproduction of antibodies by applying osmotic pressure and sodium butyrate. Biotechnol Bioeng 42:601–610CrossRefGoogle Scholar
  34. Oh HK, So MK, Yang J et al (2005) Effect of N-Acetylcystein on butyrate-treated chinese hamster ovary cells to improve the production of recombinant human interferon-beta-1a. Biotechnol Prog 21:1154–1164CrossRefGoogle Scholar
  35. Omasa T, Furuichi K, Iemura T et al (2010) Enhanced antibody production following intermediate addition based on flux analysis in mammalian cell continuous culture. Bioprocess Biosyst Eng 33:117–125CrossRefGoogle Scholar
  36. Portakal O, Özkaya Ö, Erdeninal M et al (2000) Coenzyme Q10 concentrations and antioxidant status in tissues of breast cancer patients. Clin Biochem 33:279–284CrossRefGoogle Scholar
  37. Shields RL, Lai J, Keck R et al (2002) Lack of fucose on human IgG1 N-linked oligosaccharide improves binding to human Fcgamma RIII and antibody-dependent cellular toxicity. J Biol Chem 277:26733–26740CrossRefGoogle Scholar
  38. Shinkawa T, Nakamura K, Yamane N et al (2003) The absence of fucose but not the presence of galactose or bisecting N-acetylglucosamine of human IgG1 complex-type oligosaccharides shows the critical role of enhancing antibody-dependent cellular cytotoxicity. J Biol Chem 278:3466–3473CrossRefGoogle Scholar
  39. Shukla AA, Thömmes J (2010) Recent advances in large-scale production of monoclonal antibodies and related proteins. Trends Biotechnol 28:253–261CrossRefGoogle Scholar
  40. Shults CW, Flint Beal M, Song D et al (2004) Pilot trial of high dosages of coenzyme Q10 in patients with Parkinson’s disease. Exp Neurol 188:491–494CrossRefGoogle Scholar
  41. Singh RB, Wander GS, Rastogi A et al (1998) Randomized, double-blind placebo-controlled trial of coenzyme Q10 in patients with acute myocardial infarction. Cardiovasc Drugs Ther 12:347–353CrossRefGoogle Scholar
  42. Soja AM, Mortensen SA (1997) Treatment of congestive heart failure with coenzyme Q10 Illuminated by meta-analyses of clinical trials. Mol Aspects Med 18:159–168CrossRefGoogle Scholar
  43. Stojkovic M, Westesen K, Zakhartchenko V et al (1999) Coenzyme Q10 in submicron-sized dispersion improves development, hatching, cell proliferation, and adenosine triphosphate content of in vitro-produced bovine embryos. Biol Reprod 61:541–547CrossRefGoogle Scholar
  44. Sun IL, Sun EE, Crane FL (1992a) Stimulation of serum-free cell proliferation by coenzyme Q. Biochem Biophys Res Commun 189:8–13CrossRefGoogle Scholar
  45. Sun IL, Sun EE, Crane FL et al (1992b) Requirement for coenzyme Q in plasma membrane electron transport. Proc Natl Acad Sci USA 89:11126–11130CrossRefGoogle Scholar
  46. Sun IL, Sun EE, Crane FL (1995) Comparison of growth stimulation of HeLa cells, HL-60 cells, and mouse fibroblasts by coenzyme Q10. Protoplasma 184:214–219CrossRefGoogle Scholar
  47. Takane M, Sugano N, Iwasaki H et al (2002) New biomarker evidence of oxidative DNA damage in whole saliva from clinically healthy and periodontally diseased individuals. J Periodontol 73:551–554CrossRefGoogle Scholar
  48. Takenouchi S, Sugahara T (2003) Lactate dehydrogenase enhances immunoglobulin production by human hybridoma and human peripheral blood lymphocytes. Cytotechnology 42:133–143CrossRefGoogle Scholar
  49. Terada S, Nishimura T, Sasaki M et al (2002) Sericin, a protein derived from silkworms, accelerates the proliferation of several mammalian cell lines including a hybridoma. Cytotechnology 40:3–12CrossRefGoogle Scholar
  50. Tsao Y-S, Condon R, Schaefer E et al (2001) Development and improvement of a serum-free suspension process for the production of recombinant adenoviral vectors using HEK293 cells. Cytotechnology 37:189–198CrossRefGoogle Scholar
  51. Turunen M, Olsson J, Dallner G (2004) Metabolism and function of coenzyme Q. Biochimica et Biophysica Acta (BBA) Biomemb 1660:171–199CrossRefGoogle Scholar
  52. Walsh G (2006) Biopharmaceutical benchmarks 2006. Nat Biotech 24:769–776CrossRefGoogle Scholar
  53. Werner RG (2004) Economic aspects of commercial manufacture of biopharmaceuticals. J Biotechnol 113:171–182CrossRefGoogle Scholar
  54. Wurm FM (2004) Production of recombinant protein therapeutics in cultivated mammalian cells. Nat Biotechnol 22:1393–1398CrossRefGoogle Scholar
  55. Yegorov Y, Moldaver M, Vishnyakova K et al (2007) Enhanced control of proliferation in telomerized cells. Russ J Develop Biol 38:76–89CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Yoshinobu Konno
    • 1
    • 5
    Email author
  • Motoi Aoki
    • 2
  • Masakazu Takagishi
    • 3
  • Naoto Sakai
    • 1
  • Masamichi Koike
    • 4
  • Kaori Wakamatsu
    • 5
  • Shinji Hosoi
    • 2
  1. 1.Bioprocess Research and Development LaboratoriesKyowa Hakko Kirin Co., Ltd.GunmaJapan
  2. 2.Kyowa Hakko Kirin Co., Ltd.Chiyoda-ku, TokyoJapan
  3. 3.Kyowa Hakko Kirin Co., Ltd.Chuo-ku, TokyoJapan
  4. 4.BioWa, Inc.PrincetonUSA
  5. 5.Graduate School of EngineeringGunma UniversityKiryu-shiJapan

Personalised recommendations