Skip to main content
Log in

Cost-effective gene transfection by DNA compaction at pH 4.0 using acidified, long shelf-life polyethylenimine

  • Brief Report
  • Published:
Cytotechnology Aims and scope Submit manuscript

Abstract

Introduction of genetic material into cells is an essential prerequisite for current research in molecular cell biology. Although transfection with commercially available reagents results in excellent gene expression, their high costs are obstacles to experimentation with a large number or large scales of transfection. The cationic polymer linear-polyethylenimine (MW 25,000) (PEI), one of the most cost-effective vehicles, facilitates DNA compaction by polyplex formation, which leads to efficient delivery of DNA into cells by endocytosis. However, the use of PEI is still limited because of substantial cytotoxicity and intolerable deterioration in transfection efficiency by its low stability. Here, we show that acidification of PEI is important for its transfection activity. Dissolving PEI powder in 0.2N HCl confers a long shelf-life for PEI storage at 4 and −80 °C, and the polyplex formation of plasmid DNA with PEI is optimized in lactate-buffered saline at pH 4.0. Furthermore, changing the culture medium at 8–12 h posttransfection can minimize the cytotoxicity of PEI without sacrificing the high transfection efficiency comparable to that of commercial reagents. The cost per test using acidified PEI is drastically reduced to approximately 1:10,000, compared with commercial reagents. Thus, we conclude that acidification of PEI satisfactorily accomplishes cost-effective, high-efficiency transfection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  • Abdallah B, Hassan A, Benoist C, Goula D, Behr JP, Demeneix BA (1996) A powerful nonviral vector for in vivo gene transfer into the adult mammalian brain: polyethylenimine. Hum Gene Ther 7:1947–1954

    Article  CAS  Google Scholar 

  • Boussif O, Lezoualc’h F, Zanta MA, Mergny MD, Scherman D, Demeneix B, Behr JP (1995) A versatile vector for gene and oligonucleotide transfer into cells in culture and in vivo: polyethylenimine. Proc Natl Acad Sci USA 92:7297–7301

    Article  CAS  Google Scholar 

  • Brissault B, Kichler A, Guis C, Leborgne C, Danos O, Cheradame H (2003) Synthesis of linear polyethylenimine derivatives for DNA transfection. Bioconjug Chem 14:581–587. doi:10.1021/bc0200529

    Article  CAS  Google Scholar 

  • Clamme JP, Azoulay J, Mély Y (2003) Monitoring of the formation and dissociation of polyethylenimine/DNA complexes by two photon fluorescence correlation spectroscopy. Biophys J 84:1960–1968. doi:10.1016/S0006-3495(03)75004-8

    Article  CAS  Google Scholar 

  • Davis ME (2002) Non-viral gene delivery systems. Curr Opin Biotechnol 13:128–131. doi:10.1016/S0958-1669(02)00294-X

    Article  CAS  Google Scholar 

  • Durocher Y, Perret S, Kamen A (2002) High-level and high-throughput recombinant protein production by transient transfection of suspension-growing human 293-EBNA1 cells. Nucleic Acids Res 30:e9

    Article  Google Scholar 

  • Ehrhardt C, Schmolke M, Matzke A, Knoblauch A, Will C, Wixler V, Ludwig S (2006) Polyethylenimine, a cost-effective transfection reagent. Signal Transduction 6:179–184. doi:10.1002/sita.200500073

    Article  CAS  Google Scholar 

  • Ferrari S, Moro E, Pettenazzo A, Behr JP, Zacchello F, Scarpa M (1997) ExGen 500 is an efficient vector for gene delivery to lung epithelial cells in vitro and in vivo. Gene Ther 4:1100–1106

    Article  CAS  Google Scholar 

  • Fischer D, Bieber T, Li Y, Elsässer HP, Kissel T (1999) A novel non-viral vector for DNA delivery based on low molecular weight, branched polyethylenimine: effect of molecular weight on transfection efficiency and cytotoxicity. Pharm Res 16:1273–1279. doi:10.1023/A:1014861900478

    Article  CAS  Google Scholar 

  • Godbey WT, Wu K, Mikos AG (2001) Poly(ethylenimine)-mediated gene delivery affects endothelial cell function and viability. Biomaterials 22:471–480. doi:10.1016/S0142-9612(00)00203-9

    Article  CAS  Google Scholar 

  • Goula D, Remy JS, Erbacher P, Wasowicz M, Levi G, Abdallah B, Demeneix BA (1998) Size, diffusibility and transfection performance of linear PEI/DNA complexes in the mouse central nervous system. Gene Ther 5:712–717

    Article  CAS  Google Scholar 

  • Greenberg SM, Rosenthal DS, Greeley TA, Tantravahi R, Handin RI (1988) Characterization of a new megakaryocytic cell line: the Dami cell. Blood 72:1968–1977

    CAS  Google Scholar 

  • Higashiyama Y, Takahashi A, Fukumoto Y, Nakayama Y, Yamaguchi N (2009) Induction of chromatin condensation by nuclear expression of a novel arginine-rich cationic protein genetically engineered from the enhanced green fluorescent protein. Cytotechnology 60:153–159. doi: 10.1007/s10616-009-9227-7

    Article  CAS  Google Scholar 

  • Hirao A, Huang XL, Suda T, Yamaguchi N (1998) Overexpression of C-terminal Src kinase homologous kinase suppresses activation of Lyn tyrosine kinase required for VLA5-mediated Dami cell spreading. J Biol Chem 273:10004–10010. doi:10.1074/jbc.273.16.10004

    Article  CAS  Google Scholar 

  • Ira, Mély Y, Krishnamoorthy G (2003) DNA vector polyethyleneimine affects cell pH and membrane potential: a time-resolved fluorescence microscopy study. J Fluoresc 13:339–347. doi:10.1023/A:1025381812568

    Article  CAS  Google Scholar 

  • Menzel H, Horstmann S, Behrens P, Bärnreuther P, Krueger I, Jahns M (2003) Chemical properties of polyamines with relevance to the biomineralization of silica. Chem Commun 2003:2994–2995. doi:10.1039/b310201g

    Article  Google Scholar 

  • Miyazaki J, Takaki S, Araki K, Tashiro F, Tominaga A, Takatsu K, Yamamura K (1989) Expression vector system based on the chicken beta-actin promoter directs efficient production of interleukin-5. Gene 79:269–277. doi:10.1016/0378-1119(89)90209-6

    Article  CAS  Google Scholar 

  • Moghimi SM, Symonds P, Murray JC, Hunter AC, Debska G, Szewczyk A (2005) A two-stage poly(ethylenimine)-mediated cytotoxicity: implications for gene transfer/therapy. Mol Ther 11:990–995. doi:10.1016/j.ymthe.2005.02.010

    Article  CAS  Google Scholar 

  • Nakayama Y, Yamaguchi N (2005) Multi-lobulation of the nucleus in prolonged S phase by nuclear expression of Chk tyrosine kinase. Exp Cell Res 304:570–581. doi:10.1016/j.yexcr.2004.11.027

    Article  CAS  Google Scholar 

  • Nakayama Y, Kawana A, Igarashi A, Yamaguchi N (2006) Involvement of the N-terminal unique domain of Chk tyrosine kinase in Chk-induced tyrosine phosphorylation in the nucleus. Exp Cell Res 312:2252–2263. doi:10.1016/j.yexcr.2006.03.021

    Article  CAS  Google Scholar 

  • Nakayama Y, Igarashi A, Kikuchi I, Obata Y, Fukumoto Y, Yamaguchi N (2009) Bleomycin-induced over-replication involves sustained inhibition of mitotic entry through the ATM/ATR pathway. Exp Cell Res 315:2515–2528. doi:10.1016/j.yexcr.2009.06.007

    Article  CAS  Google Scholar 

  • Ogris M, Steinlein P, Kursa M, Mechtler K, Kircheis R, Wagner E (1998) The size of DNA/transferring-PEI complexes is an important factor for gene expression in cultured cells. Gene Ther 5:1425–1433

    Article  CAS  Google Scholar 

  • Ogris M, Brunner S, Schüller S, Kircheis R, Wagner E (1999) PEGylated DNA/transferrin-PEI complexes: reduced interaction with blood components, extended circulation in blood and potential for systemic gene delivery. Gene Ther 6:595–605

    Article  CAS  Google Scholar 

  • Pham PL, Perret S, Doan HC, Cass B, St-Laurent G, Kamen A, Durocher Y (2003) Large-scale transient transfection of serum-free suspension-growing HEK293 EBNA1 cells: peptone additives improve cell growth and transfection efficiency. Biotechnol Bioeng 84:332–342. doi:10.1002/bit.10774

    Article  CAS  Google Scholar 

  • Sato I, Obata Y, Kasahara K, Nakayama Y, Fukumoto Y, Yamasaki T, Yokoyama KK, Saito T, Yamaguchi N (2009) Differential trafficking of Src, Lyn, Yes and Fyn is specified by the state of palmitoylation in the SH4 domain. J Cell Sci 122:965–975. doi:10.1242/jcs.034843

    Article  CAS  Google Scholar 

  • Suh J, Paik HJ, Hwang BK (1994) Ionization of poly(ethylenimine) and poly(allylamine) at various pH’s. Bioorg Chem 22:318–327. doi:10.1006/bioo.1994.1025

    Article  CAS  Google Scholar 

  • Takahashi A, Obata Y, Fukumoto Y, Nakayama Y, Kasahara K, Kuga T, Higashiyama Y, Saito T, Yokoyama KK, Yamaguchi N (2009) Nuclear localization of Src-family tyrosine kinases is required for growth factor-induced euchromatinization. Exp Cell Res 315:1117–1141. doi:10.1016/j.yexcr.2009.02.010

    Article  CAS  Google Scholar 

  • Thomas M, Lu JJ, Ge Q, Zhang C, Chen J, Klibanov AM (2005) Full deacylation of polyethylenimine dramatically boosts its gene delivery efficiency and specificity to mouse lung. Proc Natl Acad Sci USA 102:5679–5684. doi:10.1073/pnas.0502067102

    Article  CAS  Google Scholar 

  • Tseng WC, Tang CH, Fang TY, Su LY (2007) Trehalose enhances transgene expression mediated by DNA-PEI complexes. Biotechnol Prog 23:1297–1304. doi:10.1021/bp070224m

    Article  CAS  Google Scholar 

  • Wightman L, Kircheis R, Rössler V, Carotta S, Ruzicka R, Kursa M, Wagner E (2001) Different behavior of branched and linear polyethylenimine for gene delivery in vitro and in vivo. J Gene Med 3:362–372. doi:10.1002/jgm.187

    Article  CAS  Google Scholar 

  • Zanta MA, Boussif O, Adib A, Behr JP (1997) In vitro gene delivery to hepatocytes with galactosylated polyethylenimine. Bioconjug Chem 8:839–844. doi:10.1021/bc970098f

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The hybridoma cell line 7G7B6 was obtained from The Cell Resource Center for Biomedical Research, Institute of Development, Aging and Cancer, Tohoku University. This work was supported in part by grants-in-aid for Scientific Research, Global COE Program (Global Center for Education and Research in Immune Regulation and Treatment) and Special Funds for Education and Research (Development of SPECT probes for Pharmaceutical Innovation) from the Japanese Ministry of Education, Culture, Sports, Science and Technology, and a research grant from the Suzuken Memorial Foundation. Y.O. is a G-COE Research Assistant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naoto Yamaguchi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fukumoto, Y., Obata, Y., Ishibashi, K. et al. Cost-effective gene transfection by DNA compaction at pH 4.0 using acidified, long shelf-life polyethylenimine. Cytotechnology 62, 73–82 (2010). https://doi.org/10.1007/s10616-010-9259-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10616-010-9259-z

Keywords

Navigation