Skip to main content
Log in

Use of cyanobacterial gas vesicles as oxygen carriers in cell culture

  • Original Research
  • Published:
Cytotechnology Aims and scope Submit manuscript

Abstract

The gas vesicles isolated from the cells of filamentous cyanobacterium Anabaena flos-aquae were treated and sterilized with glutaraldehyde and then evaluated for their effectiveness as gas carriers in cell culture. Anchorage-dependent Vero cells were grown in a packed bed of microcarrier beads under the perfusion of Dulbecco’s Modified Eagle’s Medium with 1% serum. The culture medium supplemented with 1.8% (v/v) gas vesicles was found to support a 30% higher maximum glucose utilization rate than the same medium without gas vesicles. The gas vesicle suspension was confirmed to have no apparent effects on cell metabolism in T-flask cultures. The study results indicated that the gas vesicles, with high oxygen carrying capacity, can be used to increase the oxygen supply in cell culture systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Adlercreutz P, Mattiasson B (1982) Oxygen supply to immobilized cells: Oxygen supply by hemoglobin or emulsions of perfluorochemicals. Eur J Appl Microbiol Biotechnol 16:165–170

    Article  CAS  Google Scholar 

  • Alvarez MM, Guzman A, Elias M (2005) Experimental visualization of mixing pathologies in laminar stirred tank bioreactors. Chem Eng Sci 60:2449–2457

    Article  CAS  Google Scholar 

  • Arrington SA, Zeleznik MJ, Ott DW, Ju L-K (2003) Effects of polyethyleneimine on cyanobacterium Anabaena flos-aquae during cell flocculation and flotation. Enz Microb Technol 32:290–293

    Article  CAS  Google Scholar 

  • Barnikol W, Poetzschke H (2003) Use of hemoglobin, myoglobin or their derivatives as oxygen carriers for the controlled oxygen supply of microorganisms, cell and tissue cultures and organs. Ger Offen 10220990

  • Brenner J, Huelser DF (1996) Production of tissue plasminogen activator (tPA) in two and three dimensionally growing cultures of Bowes melanoma cells. Biotechnol Bioeng 51:422–433

    Article  CAS  Google Scholar 

  • Curran SJ, Black RA (2005) Oxygen transport and cell viability in an annular flow bioreactor: Comparison of laminar couette and Taylor-vortex flow regimes. Biotechnol Bioeng 89:766–774

    Article  CAS  Google Scholar 

  • Handa-Corrigan A, Emery AN, Spier RE (1989) Effect of gas-liquid interfaces on the growth of suspended mammalian cells: mechanisms of cell damage by bubbles. Enz Microb Technol 11:230–235

    Article  CAS  Google Scholar 

  • Hayes PK, Buchholz B, Walsby AE (1992) Gas vesicles are strengthened by the outer-surface protein, GvpC. Arch Microbiol 157:229–234

    Article  CAS  Google Scholar 

  • Ho CS, Ju L-K, Baddour RF (1990) Enhancing penicillin fermentations by increased oxygen solubility through the addition of n-hexadecane. Biotechnol Bioeng 36:1110–1118

    Article  CAS  Google Scholar 

  • Imamura T, Crespi CL, Thilly WG, Brunengraber H (1982) Fructose as a carbohydrate source yields stable pH and redox parameters in microcarrier cell culture. Anal Biochem 124:353–358

    Article  CAS  Google Scholar 

  • Ju L-K, Armiger WB (1990) Enhancing oxygen transfer in surface-aerated bioreactors by stable foams. Biotechnol Prog 6:262–265

    Article  CAS  Google Scholar 

  • Ju L-K, Armiger WB (1992) Use of perfluorocarbon emulsions in cell culture. BioTechniques 12:258–263

    CAS  Google Scholar 

  • Ju L-K, Lee JF, Armiger WB (1991a) Enhancing oxygen transfer in bioreactors by perfluorocarbon emulsions. Biotechnol Prog 7:323–329

    Article  CAS  Google Scholar 

  • Ju L-K, Lee JF, Armiger WB (1991b) Effect of the interfacial surfactant layer on oxygen transfer through the oil/water phase boundary in perflurocarbon emulsions. Biotechnol Bioeng 37:505–511

    Article  CAS  Google Scholar 

  • Junker BH, Hatton TA, Wang DIC (1990) Oxygen transfer enhancement in aqueous/perfluorocarbon fermentation systems: I. Experimental observations. Biotechnol Bioeng 35:586–597

    Article  CAS  Google Scholar 

  • Kaiser GRRF, Monteiro SC, Gelain DP, Souza LF, Perry MLS, Bernard EA (2005) Metabolism of amino acids by cultured rat Sertoli cells. Metabol Clin Exp 54:515–521

    CAS  Google Scholar 

  • Kashyap S, Sundararajan A, Ju L-K (1998) Flotation characteristics of cyanobacterium Anabaena flos-aquae for gas vesicle production. Biotechnol Bioeng 60:636–641

    Article  CAS  Google Scholar 

  • Keipert PE (1995) Use of oxygent, a perfluorochemical-based oxygen carrier, as an alternative to intraoperative blood transfusion. Artif Cells Blood Subst Immobil Biotechnol 23:381–394

    CAS  Google Scholar 

  • Kim HW, Greenburg AG (2004) Artificial oxygen carriers as red blood cell substitutes: a selected review and current status. Artif Organs 28:813–828

    Article  CAS  Google Scholar 

  • King AT, Mulligan BJ, Lowe KC (1987) Perfluorochemicals and cell culture. Bio/Technol 7:1037–1042

    Google Scholar 

  • Ma N, Chalmers JJ, Aunins JG, Zhou W, Xie L (2004) Quantitative studies of cell-bubble interactions and cell damage at different pluronic F-68 and cell concentrations. Biotechnol Prog 20:1183–1191

    Article  CAS  Google Scholar 

  • Maranga L, Cunha A, Clemente J, Cruz P, Carrondo MJT (2004) Scale-up of virus-like particles production: effects of sparging, agitation and bioreactor scale on cell growth, infection kinetics and productivity. J Biotechnol 107:55–64

    Article  CAS  Google Scholar 

  • Nagase K, Kohori F, Sakai K, Nishide H (2005) Rearrangement of hollow fibers for enhancing oxygen transfer in an artificial gill using oxygen carrier solution. J Memb Sci 254:207–217

    Article  CAS  Google Scholar 

  • Nahapetian AT, Thomas JN, Thilly WG (1986) Optimization of environment for high density vero cell culture: effect of dissolved oxygen and nutrient supply on cell growth and changes in metabolites. J Cell Sci 81:65–103

    CAS  Google Scholar 

  • Oh SKW, Nienow AW, Al-Rubeai M, Emery AN (1987) On the evaluation of gas-liquid interfacial effects on hybridoma viability in bubble column bioreactors. J Biotechnol 12:45–62

    Article  Google Scholar 

  • Pithon-Curi TC, Pires de Melo M, Curi R (2004) Glucose and glutamine utilization by rat lymphocytes, monocytes and neutrophils in culture: A comparative study. Cell Biochem Funct 22:321–326

    Article  CAS  Google Scholar 

  • Reiss JG, Le Blanc M (1982) Solubility and transport phenomena in perfluorochemicals relevant to blood substitution and other biomedical applications. Pure Appl Chem 54:2383–2406

    Google Scholar 

  • Remy B, Deby-Dupont G, Lamy M (1999) Red blood cell substitutes: fluorocarbon emulsions and haemoglobin solutions. Brit Med Bull 55:277–298

    Article  CAS  Google Scholar 

  • Shima M, Seino Y, Tanaka H, Kurose H, Ishida M, Yabuuchi H, Kodama H (1988) Microcarriers facilitate mineralization in MC3T3-E1 cells. Calcif Tissue Int 43:19–25

    Article  CAS  Google Scholar 

  • Sundararajan A, Ju L-K (2000a) Evaluation of oxygen permeability of gas vesicles from cyanobacterium Anabaena flos-aquae. J Biotechnol 77:151–156

    Article  CAS  Google Scholar 

  • Sundararajan A, Ju L-K (2000b) Glutaraldehyde treatment of proteinaceous gas vesicles from cyanobacterium anabaena flos-aquae. Biotechnol Prog 16:1124–1128

    Article  CAS  Google Scholar 

  • Thilly WG, Barngrover D, Thomas JN (1982) Microcarriers and the problem of high density cell culture. In: From gene to protein: translation into biotechnology. Academic Press, New York, pp 75–103

  • Walsby AE (1969) The permeability of blue-green algal gas vacuole membranes to gas. Proc R Soc Lond Ser B 173:235–255

    Article  Google Scholar 

  • Walsby AE (1982) The elastic compressibility of gas vesicles. Proc R Soc Lond B 216:355–368

    Google Scholar 

  • Walsby AE (1994) Gas vesicles. Microbiol Rev 58:94–144

    CAS  Google Scholar 

  • Walsby AE, Armstrong RE (1979) Average thickness of the gas vesicle wall in Anabaena flos-aquae. J Mol Biol 129:279–285

    Article  CAS  Google Scholar 

  • Walsby AE, Buckland B (1969) Isolation and purification of intact gas vesicles from a blue-green alga. Nature (London) 224:716–717

    Article  Google Scholar 

  • Walsby AE, Hayes PK (1988) The minor cyanobacterial gas vesicle protein, GVPc, is attached to the outer surface of the gas vesicle. J Gen Microbiol 134:2647–2657

    CAS  Google Scholar 

  • Walsby AE, Revsbech NP, Griffel DH (1992) The gas permeability coefficient of the cyanobacterial gas vesicle wall. J Gen Microbiol 138:837–845

    CAS  Google Scholar 

  • Wong DCF, Wong KTK, Goh LT, Heng CK, Yap MGS (2004) Impact of dynamic online fed-batch strategies on metabolism, productivity and N-glycosylation quality in CHO cell cultures. Biotechnol Bioeng 89:164–177

    Article  CAS  Google Scholar 

  • Zeleznik MJ, Segatta JM, Ju L-K (2002) Polyethyleneimine-induced flocculation and flotation of cyanobacterium Anabaena flos-aquae for gas vesicle production. Enz Microb Technol 31:949–953

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The work was supported by a grant to Ohio Bioprocessing Research Consortium from Ohio Board of Regents and a Faculty Research Grant from The University of Akron.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lu-Kwang Ju.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sundararajan, A., Ju, LK. Use of cyanobacterial gas vesicles as oxygen carriers in cell culture. Cytotechnology 52, 139–149 (2006). https://doi.org/10.1007/s10616-007-9044-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10616-007-9044-9

Keywords

Navigation