Skip to main content
Log in

Stability and Chaos of the Duopoly Model of Kopel: A Study Based on Symbolic Computations

  • Published:
Computational Economics Aims and scope Submit manuscript

Abstract

Since Kopel’s duopoly model was proposed about 3 decades ago, there are almost no analytical results on the equilibria and their stability in the asymmetric case. The first objective of our study is to fill this gap. This paper analyzes the asymmetric duopoly model of Kopel analytically by using several tools based on symbolic computations. We discuss the possibility of the existence of multiple positive equilibria and establish conditions for a given number of positive equilibria to exist. The possible positions of the equilibria in Kopel’s model are also explored. Furthermore, in the asymmetric model of Kopel, if the duopolists adopt the best response reactions or homogeneous adaptive expectations, we establish conditions for the local stability of equilibria for the first time. The occurrence of chaos in Kopel’s model seems to be supported by observations through numerical simulations, which, however, is challenging to prove rigorously. The second objective of this paper is to prove the existence of snapback repellers in Kopel’s map, which implies the existence of chaos in the sense of Li–Yorke according to Marotto’s theorem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Agiza, H. N. (1999). On the analysis of stability, bifurcation, chaos and chaos control of Kopel map. Chaos, Solitons & Fractals, 10(11), 1909–1916.

    Article  Google Scholar 

  • Agiza, H. N., Bischi, G. I., & Kopel, M. (1999). Multistability in a dynamic Cournot game with three oligopolists. Mathematics and Computers in Simulation, 51(1–2), 63–90.

    Article  Google Scholar 

  • Anderson, D. R., Myran, N. G., & White, D. L. (2005). Basins of attraction in a Cournot duopoly model of Kopel. Journal of Difference Equations and Applications, 11(10), 879–887.

    Article  Google Scholar 

  • Bischi, G. I., & Kopel, M. (2001). Equilibrium selection in a nonlinear duopoly game with adaptive expectations. Journal of Economic Behavior & Organization, 46(1), 73–100.

    Article  Google Scholar 

  • Bischi, G. I., Mammana, C., & Gardini, L. (2000). Multistability and cyclic attractors in duopoly games. Chaos, Solitons & Fractals, 11(4), 543–564.

    Article  Google Scholar 

  • Bistritz, Y. (1984). Zero location with respect to the unit circle of discrete-time linear system polynomials. Proceedings of the IEEE, 72(9), 1131–1142.

    Article  Google Scholar 

  • Buchberger, B. (1985). Gröbner bases: An algorithmic method in polynomial ideal theory. In N. K. Bose (Ed.), Multidimensional systems theory (pp. 184–232). Dordrecht: Reidel.

    Chapter  Google Scholar 

  • Cánovas, J. S., & Muñoz-Guillermo, M. (2018). On the dynamics of Kopel’s Cournot duopoly model. Applied Mathematics and Computation, 330, 292–306.

    Article  Google Scholar 

  • Cavalli, F., & Naimzada, A. (2015). Nonlinear dynamics and convergence speed of heterogeneous Cournot duopolies involving best response mechanisms with different degrees of rationality. Nonlinear Dynamics, 81(1), 967–979.

    Article  Google Scholar 

  • Collins, G. E., & Hong, H. (1991). Partial cylindrical algebraic decomposition for quantifier elimination. Journal of Symbolic Computation, 12(3), 299–328.

    Article  Google Scholar 

  • Collins, G. E., & Loos, R. (1983). Real zeros of polynomials. In B. Buchberger, G. Collins, & R. Loos (Eds.), Computer algebra: Symbolic and algebraic computation (pp. 83–94). New York: Springer.

    Chapter  Google Scholar 

  • Cooper, R. (1994). Equilibrium selection in imperfectly competitive economies with multiple equilibria. The Economic Journal, 104(426), 1106.

    Article  Google Scholar 

  • Echenique, F., & Komunjer, I. (2009). Testing models with multiple equilibria by quantile methods. Econometrica, 77(4), 1281–1297.

    Article  Google Scholar 

  • Elsadany, A. A., & Awad, A. M. (2016). Dynamical analysis and chaos control in a heterogeneous Kopel duopoly game. Indian Journal of Pure and Applied Mathematics, 47(4), 617–639.

    Article  Google Scholar 

  • Eskandari, Z., Alidousti, J., & Ghaziani, R. K. (2021). Codimension-one and-two bifurcations of a three-dimensional discrete game model. International Journal of Bifurcation and Chaos, 31(02), 2150023.

    Article  Google Scholar 

  • Gardini, L., Sushko, I., Avrutin, V., & Schanz, M. (2011). Critical homoclinic orbits lead to snap-back repellers. Chaos, Solitons & Fractals, 44(6), 433–449.

    Article  Google Scholar 

  • Govaerts, W., & Ghaziani, R. K. (2008). Stable cycles in a Cournot duopoly model of Kopel. Journal of Computational and Applied Mathematics, 218(2), 247–258.

    Article  Google Scholar 

  • Huang, B., & Niu, W. (2019). Analysis of snapback repellers using methods of symbolic computation. International Journal of Bifurcation and Chaos, 29(04), 1950054.

    Article  Google Scholar 

  • Jin, M., Li, X., & Wang, D. (2013). A new algorithmic scheme for computing characteristic sets. Journal of Symbolic Computation, 50, 431–449.

    Article  Google Scholar 

  • Jing, Z., Chang, Y., & Guo, B. (2004). Bifurcation and chaos in discrete FitzHugh–Nagumo system. Chaos, Solitons & Fractals, 21(3), 701–720.

    Article  Google Scholar 

  • Jury, E., Stark, L., & Krishnan, V. (1976). Inners and stability of dynamic systems. IEEE Transactions on Systems, Man, and Cybernetics, 10, 724–725.

    Article  Google Scholar 

  • Kopel, M. (1996). Simple and complex adjustment dynamics in Cournot duopoly models. Chaos, Solitons & Fractals, 7(12), 2031–2048.

    Article  Google Scholar 

  • Kubler, F., & Schmedders, K. (2010). Tackling multiplicity of equilibria with Gröbner bases. Operations Research, 58(4–Part–2), 1037–1050.

    Article  Google Scholar 

  • Lazard, D., & Rouillier, F. (2007). Solving parametric polynomial systems. Journal of Symbolic Computation, 42(6), 636–667.

    Article  Google Scholar 

  • Li, B., Liang, H., Shi, L., & He, Q. (2022). Complex dynamics of Kopel model with nonsymmetric response between oligopolists. Chaos, Solitons, & Fractals, 156, 111860-1–14.

    Article  Google Scholar 

  • Li, B., Zhang, Y., Li, X., Eskandari, Z., & He, Q. (2023). Bifurcation analysis and complex dynamics of a Kopel triopoly model. Journal of Computational and Applied Mathematics, 426, 115089.

    Article  Google Scholar 

  • Li, C., & Chen, G. (2003). An improved version of the Marotto Theorem. Chaos, Solitons & Fractals, 18(1), 69–77.

    Article  Google Scholar 

  • Li, T.-Y., & Yorke, J. A. (1975). Period three implies chaos. The American Mathematical Monthly, 82(10), 985–992.

    Article  Google Scholar 

  • Li, X. (2022). Analysis of the stability and the bifurcations of two heterogeneous triopoly games with an isoelastic demand. AIMS Mathematics, 7(10), 19388–19414.

    Article  Google Scholar 

  • Li, X., Chen, K., Niu, W., & Huang, B. (2023). Stability and chaos of the duopoly model of kopel: A study based on symbolic computations. arXiv:2304.02136.

  • Li, X., Li, B., & Liu, L. (2023). Stability and dynamic behaviors of a limited monopoly with a gradient adjustment mechanism. Chaos, Solitons & Fractals, 168, 113106-1–18.

    Article  Google Scholar 

  • Li, X., Mou, C., & Wang, D. (2010). Decomposing polynomial sets into simple sets over finite fields: The zero-dimensional case. Computers & Mathematics with Applications, 60(11), 2983–2997.

    Article  Google Scholar 

  • Li, X., & Wang, D. (2014). Computing equilibria of semi-algebraic economies using triangular decomposition and real solution classification. Journal of Mathematical Economics, 54, 48–58.

    Article  Google Scholar 

  • Liao, K.-L., & Shih, C.-W. (2012). Snapback repellers and homoclinic orbits for multi-dimensional maps. Journal of Mathematical Analysis and Applications, 386(1), 387–400.

    Article  Google Scholar 

  • Marotto, F. R. (1978). Snap-back repellers imply chaos in \({R}_n\). Journal of Mathematical Analysis and Applications, 63(1), 199–223.

    Article  Google Scholar 

  • Marotto, F. R. (2005). On redefining a snap-back repeller. Chaos, Solitons & Fractals, 25(1), 25–28.

    Article  Google Scholar 

  • Ming, H., Hu, H., & Zheng, J. (2021). Analysis of a new coupled hyperchaotic model and its topological types. Nonlinear Dynamics, 105(2), 1937–1952.

    Article  Google Scholar 

  • Mishra, B. (1993). Algorithmic algebra. New York: Springer.

    Book  Google Scholar 

  • Obstfeld, M. (1984). Multiple stable equilibria in an optimizing perfect-foresight model. Econometrica, 52(1), 223.

    Article  Google Scholar 

  • Peng, C.-C. (2007). Numerical computation of orbits and rigorous verification of existence of snapback repellers. Chaos: An Interdisciplinary Journal of Nonlinear Science, 17(1), 013107.

    Article  Google Scholar 

  • Puu, T. (1991). Chaos in duopoly pricing. Chaos, Solitons & Fractals, 1(6), 573–581.

    Article  Google Scholar 

  • Ren, J., Yu, L., & Siegmund, S. (2017). Bifurcations and chaos in a discrete predator-prey model with Crowley–Martin functional response. Nonlinear Dynamics, 90(1), 19–41.

    Article  Google Scholar 

  • Rionero, S., & Torcicollo, I. (2014). Stability of a continuous reaction–diffusion Cournot–Kopel duopoly game model. Acta Applicandae Mathematicae, 132(1), 505–513.

    Article  Google Scholar 

  • Schmitt-Grohé, S., & Uribe, M. (2021). Multiple equilibria in open economies with collateral constraints. The Review of Economic Studies, 88(2), 969–1001.

    Article  Google Scholar 

  • Torcicollo, I. (2013). On the dynamics of a non-linear duopoly game model. International Journal of Non-linear Mechanics, 57, 31–38.

    Article  Google Scholar 

  • Tramontana, F., & Elsadany, A. E. A. (2012). Heterogeneous triopoly game with isoelastic demand function. Nonlinear Dynamics, 68(1–2), 187–193.

    Article  Google Scholar 

  • Tramontana, F., Elsadany, A. A., Xin, B., & Agiza, H. N. (2015). Local stability of the Cournot solution with increasing heterogeneous competitors. Nonlinear Analysis: Real World Applications, 26, 150–160.

    Google Scholar 

  • Wang, D. (2001). Elimination methods. Texts and Monographs in Symbolic ComputationNew York: Springer.

    Book  Google Scholar 

  • Wang, D., & Xia, B. (2005a). Algebraic analysis of stability for some biological systems. In Proceedings of the first international conference on algebraic biology (pp. 75–83). Tokyo: Universal Academy Press.

  • Wang, D., & Xia, B. (2005b). Stability analysis of biological systems with real solution classification. In Kauers, M. (Ed.), Proceedings of the 2005 international symposium on symbolic and algebraic computation (pp. 354–361). New York: ACM Press.

  • Wang, J., & Feng, G. (2010). Bifurcation and chaos in discrete-time BVP oscillator. International Journal of Non-linear Mechanics, 45(6), 608–620.

    Article  Google Scholar 

  • Wu, W., Chen, Z., & Ip, W. H. (2010). Complex nonlinear dynamics and controlling chaos in a Cournot duopoly economic model. Nonlinear Analysis: Real World Applications, 11(5), 4363–4377.

    Google Scholar 

  • Yang, L., Hou, X., & Xia, B. (2001). A complete algorithm for automated discovering of a class of inequality-type theorems. Science in China Series F, 44, 33–49.

    Google Scholar 

  • Yang, L., & Xia, B. (2005). Real solution classifications of parametric semi-algebraic systems. In Algorithmic algebra and logic–proceedings of the A3L 2005 (pp. 281–289). Norderstedt: Herstellung und Verlag.

  • Yao, X., Li, X., Jiang, J., & Leung, A. Y. T. (2022). Codimension-one and -two bifurcation analysis of a two-dimensional coupled logistic map. Chaos, Solitons & Fractals, 164, 112651-1–9.

    Article  Google Scholar 

  • Zhang, Y., & Gao, X. (2019). Equilibrium selection of a homogenous duopoly with extrapolative foresight. Communications in Nonlinear Science and Numerical Simulation, 67, 366–374.

    Article  Google Scholar 

  • Zhao, M. (2021). Bifurcation and chaotic behavior in the discrete BVP oscillator. International Journal of Non-linear Mechanics, 131, 103687.

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the anonymous referees for their helpful comments.

Funding

Wei Niu reports financial support was provided by Beijing Natural Science Foundation (No. 1212005). Kongyan Cheng reports financial support was provided by Social Development Science and Technology Project of Dongguan (No. 20211800900692).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bo Huang.

Ethics declarations

Conflict of interest

The authors report no conflict of interest. The authors alone are responsible for the content and writing of the paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, X., Chen, K., Niu, W. et al. Stability and Chaos of the Duopoly Model of Kopel: A Study Based on Symbolic Computations. Comput Econ (2024). https://doi.org/10.1007/s10614-024-10608-2

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10614-024-10608-2

Keywords

Navigation