Skip to main content
Log in

Bifurcations and chaos in a discrete predator–prey model with Crowley–Martin functional response

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In this paper, a discrete-time predator–prey model with Crowley–Martin functional response is investigated based on the center manifold theorem and bifurcation theory. It is shown that the system undergoes flip bifurcation and Neimark–Sacker bifurcation. An explicit approximate expression of the invariant curve, caused by Neimark–Sacker bifurcation, is given. The fractal dimension of a strange attractor and Feigenbaum’s constant of the model are calculated. Moreover, numerical simulations using AUTO and MATLAB are presented to support theoretical results, such as a cascade of period doubling with period-2, 4, 6, 8, 16, 32 orbits, period-10, 20, 19, 38 orbits, invariant curves, codimension-2 bifurcation and chaotic attractor. Chaos in the sense of Marotto is also proved by both analytical and numerical methods. Analyses are displayed to illustrate the effect of magnitude of interference among predators on dynamic behaviors of this model. Further the chaotic orbit is controlled to be a fixed point by using feedback control method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Leslie, P.H., Gower, J.C.: The properties of a stochastic model for the predator-prey type of interaction between two species. Biometrika 47, 219–234 (1960)

    Article  MathSciNet  MATH  Google Scholar 

  2. Hainzl, J.: Stability and Hopf bifurcation a predator-prey system with several parameters. SIAM J. Appl. Math. 48, 170–190 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  3. Murray, J.D.: Mathematical Biology. Springer, New York (1993)

    Book  MATH  Google Scholar 

  4. Kuznetsov, Y.A., Muratori, S., Rinaldi, S.: Bifurcations and chaos in a periodic predator-prey model. Int. J. Bifurc. Chaos. 2, 117–128 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  5. Zhu, H.P., Campbell, S.A., Wolkowicz, G.S.K.: Bifurcation analysis of a predator-prey system with nonmonotonic functional response. SIAM J. Appl. Math. 63, 636–682 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  6. Li, B., Kuang, Y.: Heteroclinic bifurcation in the Michaelis–Menten-type ratio-dependent predator-prey system. SIAM J. Appl. Math. 67, 1453–1464 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  7. Huang, J.C., Ruan, S.G., Song, J.: Bifurcations in a predator-prey system of Leslie type with generalized Holling type III functional response. J. Differ. Equ. 257, 1721–1752 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  8. Shi, H.B., Ruan, S.G.: Spatial, temporal and spatiotemporal patterns of diffusive predator-prey models with mutual interference. IMA J. Appl. Math. 80, 1534–1568 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  9. Yang, R.Z., Wei, J.J.: Stability and bifurcation analysis of a diffusive prey-predator system in Holling type III with a prey refuge. Nonlinear Dyn. 79, 631–646 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  10. Li, S.P., Zhang, W.N.: Bifurcations of a discrete predator-prey model with Holling type II functional response. Discret. Cont. Dyn. B 14, 159–176 (2010)

    Article  MATH  Google Scholar 

  11. Guckenheimer, J., Oster, G., Ipaktchi, A.: The dynamics of density dependent population models. J. Math. Biol. 4, 101–147 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  12. Liu, X.L., Xiao, D.M.: Bifurcation in a discrete time Lotka-Volterra predator-prey system. Discrete Cont. Dyn-B 6, 559–572 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  13. He, Z.M., Lai, X.: Bifurcation and chaotic behavior of a discrete-time predator-prey system. Nonlinear Anal. Real 12, 403–417 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  14. Hu, D.P., Cao, H.J.: Bifurcation and chaos in a discrete-time predator–prey system of Holling and Leslie type. Commun. Nonlinear Sci. Numer. Simulat. 22, 702–715 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  15. Jiang, X.W., Zhan, X.S., Guan, Z.H., Zhang, X.H., Yu, L.: Neimark–Sacker bifurcation analysis on a numerical discretization of Gause-type predator-prey model with delay. J. Frankl. I(352), 1–15 (2015)

    MathSciNet  MATH  Google Scholar 

  16. Crowley, P.H., Martin, E.K.: Functional responses and interference within and between year classes of a dragonfly population. J. N. Am. Benthol. Soc. 8, 211–221 (1989)

    Article  Google Scholar 

  17. Skalski, G.T., Gilliam, J.F.: Functional response with predator interference: viable alternatives to the Holling type II model. Ecology 82, 3083–3092 (2001)

    Article  Google Scholar 

  18. Wei, M.H., Wu, J.H., Guo, G.H.: The effect of predator competition on positive solutions for a predator–prey model with diffusion. Nonlinear Anal. Theor. 75, 5053–5068 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  19. Dong, Y.Y., Zhang, S.L., Li, S.B., Li, Y.L.: Qualitative analysis of a predator–prey model with Crowley-Martin functional response. Int. J. Bifurcat. Chaos 25, 1550110 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  20. Li, S.B., Wu, J.H., Dong, Y.Y.: Uniqueness and stability of a predator–prey model with C-M functional response. Comput. Math. Appl. 69, 1080–1095 (2015)

    Article  MathSciNet  Google Scholar 

  21. Tripathi, J.P., Tyagi, S., Abbas, S.: Global analysis of a delayed density dependent predator–prey model with Crowley-Martin functional response. Commun. Nonlinear Sci. Numer. Simulat. 30, 45–69 (2016)

    Article  MathSciNet  Google Scholar 

  22. Carr, J.: Application of Center Manifold Therory. Springer, New York (1981)

    Book  Google Scholar 

  23. Kuznetsov, Y.A.: Elements of Applied Bifurcation Throry, 2nd edn. Springer, New York (1998)

    Google Scholar 

  24. Guckenheimer, J., Holmes, P.: Nonlinear Oscillations, Dynamical System and Bifurcation of Vector Fields. Springer, New York (1983)

    Book  MATH  Google Scholar 

  25. Robinson, C.: Dynamical Systems, Stability, Symbolic Dynamics and Chaos, 2nd edn. CRC press, Boca Raton (1999)

  26. Wiggins, S.: Introduction to Applied Nonlinear Dynamical Systems and Chaos, 2nd edn. Springer, New York (2003)

    MATH  Google Scholar 

  27. Murakami, K.: The invariant curve caused by Neimark–Sacker bifurcation. Discrete Cont. Dyn. A 9, 121–132 (2002)

    MathSciNet  MATH  Google Scholar 

  28. Marotto, F.R.: Snap-back repellers imply chaos in \({\mathbb{R}}^n\). J. Math. Anal. Appl. 63, 199–223 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  29. Marotto, F.R.: On redefining a snap-back repeller. Chaos Solitions Fract. 12, 25–28 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  30. Yuan, X.L., Jiang, T., Jing, Z.J.: Bifurcation and chaos in the tinkerbell map. Int. J. Bifurcat. Chaos 21, 3137–3156 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  31. Doedel, E.J., Oldeman, B.E.: AUTO-07P: continuation and bifurcation software for ordinary differential equations. http://cmvl.cs.concordia.ca/auto. (2012)

  32. Vandermeer, J.: Period ‘bubbling’ in simple ecological models: pattern and chaos formation in a quartic model. Ecol. Model. 95, 311–317 (1997)

    Article  Google Scholar 

  33. Feigenbaum, M.J.: Quantitative universality for a class of nonlinear transformations. J. Stat. Phys. 21, 669–706 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  34. Feigenbaum, M.J.: The universal metric properties of nonlinear transformations. J. Stat. Phys. 22, 186–223 (1979)

    MathSciNet  MATH  Google Scholar 

  35. Feigenbaum, M.J., Kadanoff, L.P., Shenker, S.J.: Quasiperiodicity in dissipative systems: a renormalisation group analysis. Phys. D 5, 370–386 (1982)

    Article  MathSciNet  Google Scholar 

  36. Chen, G.R., Dong, X.M.: From Chaos to Order: Perspectives, Methodologies, and Applications. World Scientific, Singapore (1998)

    Book  MATH  Google Scholar 

  37. Elaydi, S.N.: An Introduction to Difference Equations, 3rd edn. Springer, New York (2005)

    MATH  Google Scholar 

  38. Lynch, S.: Dynamical Systems with Applications Using Mathematica. Birkhäuser, Boston (2007)

    MATH  Google Scholar 

Download references

Acknowledgements

This work is supported by the Plan for Scientific Innovation Talent of Henan Province (164200510011), Innovative Research Team of Science and Technology in Henan Province (17IRTSTHN007), Opening fund of State Key Laboratory of Nonlinear Mechanics (LNM201710) and the NSFC (11271339) project and the National Key Research and Development Program of China (2017YFB0702504).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jingli Ren.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ren, J., Yu, L. & Siegmund, S. Bifurcations and chaos in a discrete predator–prey model with Crowley–Martin functional response. Nonlinear Dyn 90, 19–41 (2017). https://doi.org/10.1007/s11071-017-3643-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-017-3643-6

Keywords

Mathematics Subject Classification

Navigation