Skip to main content
Log in

Singular Stochastic Differential Equations for Time Evolution of Stocks Within Non-white Noise Approach

  • Published:
Computational Economics Aims and scope Submit manuscript

Abstract

The influence of non-linear terms and non-white noise terms on stochastic differential equation model for time evolution of prices of the market is investigated with aim to analyse the effect generated on exponent of the long-tail distribution of the probability density of the returns and Hurst index. In particular, whether the model proposed is adequate as a possible mathematical model for description of the market either if it satisfies to the stylized facts obeyed by the financial markets as the long-tail distribution of the returns, which must obey to the inverse cubic law observed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Assenzaa, T., Gattia, D. D., & Grazzinia, Jakob. (2015). Emergent dynamics of a macroeconomic agent based model with capital and credit. Journal of Economic Dynamics and Control, 50, 5.

    Article  Google Scholar 

  • Black, F., & Scholes, M. (1973). The pricing of options and corporate liabilities. The Journal of Political Economy, 81, 637.

    Article  Google Scholar 

  • Botta, F., Moat, H. S., Stanley, H. E., & Preis, Tobias. (2015). Quantifying stock return distributions in financial markets. PLoS ONE, 10, e0135600.

    Article  Google Scholar 

  • Bouchaud, J.-P., & Cont, R. (1998). A Langevin approach to stock market fluctuations and crashes. The European Physical Journal B-Condensed Matter and Complex Systems, 6, 543.

    Article  Google Scholar 

  • Callen, E., & Shapero, D. (1974). A theory of social imitation. Physics Today, 27, 23.

    Article  Google Scholar 

  • Cherny, A. S., & Engelbert, Hans-Juergen. (2004). Stochastic Differential Equations, 1858. Moskow: Springer.

    Google Scholar 

  • Diks, C., & Wang, Juanxi. (2016). Can a stochastic cusp catastrophe model explain housing market crashes? Journal of Economic Dynamics and Control, 69, 68.

    Article  Google Scholar 

  • Drozdz, S., Forczek, M., Kwapien, J., Oswiecimka, P., & Rak, R. (2007). Stock market return distributions: From past to present. Physica A, 383, 59.

    Article  Google Scholar 

  • Drozdz, S., Gebarowski, R., Minati, L., Oswiecimka, P., & Watorek, M. (2018). Bitcoin market route to maturity? Evidence from return fluctuations, temporal correlations and multiscaling effects. Chaos, 28, 071101.

    Article  Google Scholar 

  • Drozdz, S., Kwapien, J., Grümmer, F., Ruf, F., & Speth, J. (2003). Are the contemporary financial fluctuations sooner converging to normal? Acta Phys. Pol. B, 34, 4293.

    Google Scholar 

  • Drozdz, S., Kwapien, J., Oswiecimka, P., & Rak, R. (2010). The foreign exchange market: Return distributions, multifractality, anomalous multifractality and the Epps effect. New Journal of Physics, 12, 105003.

    Article  Google Scholar 

  • Fama, E. F. (1963). Mandelbrot and the stable Paretian hypothesis. The Journal of Business, 36, 420.

    Article  Google Scholar 

  • Gao-Feng, G., & Zhou, W.-X. (2010). Detrending moving average algorithm for multifractals. Physical Review E, 82, 011136.

    Article  Google Scholar 

  • Gontis, V., & Kononovičius, A. (2014). Consentaneous agent-based and stochastic model of the financial markets. PLos One, 9, e102201.

    Article  Google Scholar 

  • Gontis, V., Ruseckas, J., & Kononovičius, A. (2010). A long-range memory stochastic model of the return in financial markets. Physica A, 389, 100.

    Article  Google Scholar 

  • Gopikrishnan, P., Meyer, M., Amaral, L. A. N., & Stanley, H. E. (1998). Inverse cubic law for the distribution of stock price variations. The European Physical Journal B-Condensed Matter and Complex Systems, 3, 139.

    Article  Google Scholar 

  • Gopikrishnan, P., Plerou, V., Nunes Amaral, L. A., Meyer, M., & Stanley, H. E. (1999). Scaling of the distribution of fluctuations of financial market indices. Physical Review E, 60, 5305.

    Article  Google Scholar 

  • Gu, G.-F., & Zhou, W.-X. (2009). Emergence of long memory in stock volatility from a modified Mike-Farmer model. EPL, 86, 48002.

    Article  Google Scholar 

  • Gu, G.-F., & Zhou, W.-X. (2009). On the probability distribution of stock returns in the Mike-Farmer model. The European Physical Journal B, 67(4), 585–592.

    Article  Google Scholar 

  • in t Veld, D. (2016). Adverse effects of leverage and short-selling constraints in a financial market model with heterogeneous agents. Journal of Economic Dynamics and Control, 69, 45.

    Article  Google Scholar 

  • Kononovičius, A., & Gontis, V. (2012). Agent based reasoning for the non-linear stochastic models of long-range memory. Physica A, 391, 1309.

    Article  Google Scholar 

  • Kononovičius, A., & Ruseckas, J. (2015). Nonlinear GARCH model and \(1/f\) noise. Physica A, 427, 74.

    Article  Google Scholar 

  • Kononovičius, A., & Ruseckas, J. (2019). Order book model with herd behavior exhibiting long-range memory. Physica A, 525, 171.

    Article  Google Scholar 

  • Kwapien, J., & Drozdz, S. (2012). Physical approach to complex systems. Physics Reports, 515, 115.

    Article  Google Scholar 

  • Lahmiri, S., & Bekiros, S. (2019). Cryptocurrency forecasting with deep learning chaotic neural networks. Chaos, Solitons and Fractals, 118, 35.

    Article  Google Scholar 

  • Lima, L. S. (2017). Modeling of the financial market using the two-dimensional anisotropic Ising model. Physica A, 482, 544.

    Article  Google Scholar 

  • Lima, L. S. (2019). Nonlinear stochastic equation within an Itô prescription for modelling of financial market. Entropy, 21, 530.

    Article  Google Scholar 

  • Lima, L. S., & Miranda, L. L. B. (2018). Price dynamics of the financial markets using the stochastic differential equation for a potential double well. Physica A, 490, 828.

    Article  Google Scholar 

  • Lima, L. S., & Oliveira, S. C. (2020). Two-dimensional stochastic dynamics as model for time evolution of the financial market. Chaos, Solitons & Fractals, 136, 109792.

    Article  Google Scholar 

  • Lima, L. S., Oliveira, S. C., & Abeilice, A. F. (2018). Modelling based in stochastic non-linear differential equation for price dynamics. Pioneer Journal of Mathematics and Mathematical Sciences, 23, 93.

    Google Scholar 

  • Lima, L. S., Oliveira, S. C., Abeilice, A. F., & Melgaço, A. F. (2019). Breaks down of the modeling of the financial market with addition of non-linear terms in the Itô stochastic process. Physica A, 526, 120932.

    Article  Google Scholar 

  • Lima, L. S., & Santos, Greicy KC. (2018). Stochastic process with multiplicative structure for the dynamic behavior of the financial market. Physica A, 512, 222.

    Article  Google Scholar 

  • Lux, T., & Marchesi, Michele. (1999). Scaling and criticality in a stochastic multi-agent model of a financial market. Nature, 397, 498.

    Article  Google Scholar 

  • Mandelbrot, B. B. (1960). The Pareto-Lévy Law and the distribution of income. International Economic Review, 1, 79.

    Article  Google Scholar 

  • Mandelbrot, B. B. (1961). Stable Paretian random functions and the multiplicative variation of income. Econometrica, 29, 517.

    Article  Google Scholar 

  • Mandelbrot, B. (1963). The variation of certain speculative prices. J. Bus., 35, 394.

    Article  Google Scholar 

  • Mantegna, R. S., & Stanley, H. E. (2007). An introduction to econophysics correlations and Complexity in Finance. Cambridge: New York, USA.

    Google Scholar 

  • Meng, H., Ren, F., Gu, G.-F., Xiong, X., Zhang, Y.-J., Zhou, W.-X., & Zhang, W. (2012). Effects of long memory in the order submission process on the properties of recurrence intervals of large price fluctuations. EPL, 98, 38003.

    Article  Google Scholar 

  • Mike, S., & Farmer, J. D. (2008). An empirical behavioral model of liquidity and volatility. Journal of Economic Dynamics and Control, 32, 200.

    Article  Google Scholar 

  • Montroll, E. W., & Badger, W. W. (1974). Introduction to Quantitative Aspects of Social Phenomena. New York: Gordon and Breach.

    Google Scholar 

  • Orléan, A. (1995). Bayesian interactions and collective dynamics of opinion: Herd behavior and mimetic contagion. Journal of Economic Behavior Organization, 28, 274.

    Article  Google Scholar 

  • Plerou, V., Gopikrishnan, P., Nunes Amaral, L. A., Meyer, M., & Stanley, H. E. (1999). Scaling of the distribution of price fluctuations of individual companies. Physical Review E, 60, 6519.

    Article  Google Scholar 

  • Shao, Y.-H., Gao-Feng, G., Jiang, Z.-Q., Zhou, W.-X., & Sornette, D. (2012). Comparing the performance of FA, DFA and DMA using different synthetic long-range correlated time series. Scientific Reports, 2, 835.

    Article  Google Scholar 

  • Sornette, D. (2004). Critical Phenomena in Natural Sicences–Chaos, Fractals, Self-organization and Disorder: Concepts and Tools (2nd ed.). Berlin: Springer.

    Google Scholar 

  • Sznajd-Weron, K., & Weron, R. (2002). A simple model of price formation. International Journal of Modern Physics C, 13, 115.

    Article  Google Scholar 

  • Watorek, M., Drozdz, S., Oswiecimka, P., & Stanuszek, M. (2019). Multifractal cross-correlations between the world oil and other financial markets in 2012–2017. Energy Economics, 81, 874.

    Article  Google Scholar 

  • Xing, D.-Z., Li, H.-F., Li, J.-C., & Long, Chao. (2021). Forecasting price of financial market crash via a new nonlinear potential GARCH model. Physica A, 566, 125649.

    Article  Google Scholar 

  • Zhang, X., Ping, J., Zhu, T., Li, Y., & Xiong, X. (2016). Are Price Limits Effective? an examination of an artificial stock market. PLoS ONE, 11(8), e0160406.

    Article  Google Scholar 

  • Zhou, J., Gu, G.-F., Jiang, Z.-Q., Xiong, X., Chen, W., Zhang, W., & Zhou, W.-X. (2017). Computational experiments successfully predict the emergence of autocorrelations in ultra-high-frequency stock returns. Computational Economics, 50, 579.

    Article  Google Scholar 

  • Zhou, W.-X., & Sornette, D. (2007). Self-organizing Ising model of financial markets. The European Physical Journal B, 55, 175.

    Article  Google Scholar 

Download references

Acknowledgements

This work was partially supported by National Council for Scientific and Technological Development (CNPq) Brazil.

Funding

The funding number is National Council for Scientific and Technological Development (CNPq) Nº 2449726168487062

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. S. Lima.

Ethics declarations

Conflict of Interest

The authors have not disclosed any competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Miranda, L.L.B., Lima, L.S. Singular Stochastic Differential Equations for Time Evolution of Stocks Within Non-white Noise Approach. Comput Econ (2024). https://doi.org/10.1007/s10614-023-10516-x

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10614-023-10516-x

Keywords

Navigation