Skip to main content
Log in

Research on the Effects of Liquidation Strategies in the Multi-asset Artificial Market

  • Published:
Computational Economics Aims and scope Submit manuscript

Abstract

The widespread application of algorithmic trading (AT) will have a lasting and profound effect on the financial market. This paper uses the multi-agent model to construct a multi-asset artificial stock market that can trade multiple assets simultaneously. The simulation results show that the multi-asset market can reproduce the stylized facts of the actual stock market. Then, the effects of an institutional trader using the four different AT strategies on the market containing the three risky assets are studied. The results are as follows: (1) The two types of implementation shortfall (IS) strategies can help the institutional trader achieve the smaller total liquidation costs; (2) the liquidation behavior of the institutional trader using the different strategies has significant negative impacts on the most market indicators of the liquidity, the volatility, the price discovery efficiency and the long memory of absolute returns on the whole, while the individual market indicators are improved in a few cases; (3) compared with the other three strategies, the portfolio IS strategy considering both the optimal liquidation time and the correlation of the stocks is better in terms of the execution effects and the impacts on the market.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Abergel, F., Huré, C., & Pham, H. (2020). Algorithmic trading in a microstructural limit order book model. Quantitative Finance, 20(8), 1263–1283.

    Article  Google Scholar 

  • Admati, A. R., & Pfleiderer, P. (1988). A theory of intraday patterns: Volume and price variability. The Review of Financial Studies, 1(1), 3–40.

    Article  Google Scholar 

  • Almgren, R. F. (2003). Optimal execution with nonlinear impact functions and trading-enhanced risk. Applied Mathematical Finance, 10(1), 1–18.

    Article  Google Scholar 

  • Almgren, R., & Chriss, N. (2001). Optimal execution of portfolio transactions. Journal of Risk, 3, 5–40.

    Article  Google Scholar 

  • Ammar, I. B., Hellara, S., & Ghadhab, I. (2020). High-frequency trading and stock liquidity: An intraday analysis. Research in International Business and Finance, 53, 101235.

    Article  Google Scholar 

  • Baldauf, M., & Mollner, J. (2020). High-frequency trading and market performance. The Journal of Finance, 75(3), 1495–1526.

    Article  Google Scholar 

  • Barger, W., & Lorig, M. (2019). Optimal liquidation under stochastic price impact. International Journal of Theoretical and Applied Finance, 22(02), 1850059.

    Article  Google Scholar 

  • Battiston, S., Farmer, J. D., Flache, A., et al. (2016). Complexity theory and financial regulation[J]. Science, 351(6275), 818–819.

    Article  Google Scholar 

  • Bayraktar, E., & Ludkovski, M. (2014). Liquidation in limit order books with controlled intensity. Mathematical Finance, 24(4), 627–650.

    Article  Google Scholar 

  • Bernales, A. (2019). Make-take decisions under high-frequency trading competition. Journal of Financial Markets, 45, 1–18.

    Article  Google Scholar 

  • Bertsimas, D., & Lo, A. W. (1998). Optimal control of execution costs. Journal of Financial Markets, 1(1), 1–50.

    Article  Google Scholar 

  • Biais, B., Foucault, T., & Moinas, S. (2015). Equilibrium fast trading. Journal of Financial Economics, 116(2), 292–313.

    Article  Google Scholar 

  • Bismuth, A., Guéant, O., & Pu, J. (2019). Portfolio choice, portfolio liquidation, and portfolio transition under drift uncertainty. Mathematics and Financial Economics, 13(4), 661–719.

    Article  Google Scholar 

  • Boehmer, E., Fong, K., & Wu, J. J. (2021). Algorithmic trading and market quality: International evidence. Journal of Financial and Quantitative Analysis, 56(8), 2659–2688.

    Article  Google Scholar 

  • Bookstaber, R., Paddrik, M., & Tivnan, B. (2018). An agent-based model for financial vulnerability. Journal of Economic Interaction and Coordination, 13(2), 433–466.

    Article  Google Scholar 

  • Brogaard, J., & Garriott, C. (2019). High-frequency trading competition. Journal of Financial and Quantitative Analysis, 54(4), 1469–1497.

    Article  Google Scholar 

  • Brogaard, J., Hendershott, T., & Riordan, R. (2014). High-frequency trading and price discovery. The Review of Financial Studies, 27(8), 2267–2306.

    Article  Google Scholar 

  • Carmona, R., & Webster, K. (2019). The self-financing equation in limit order book markets. Finance and Stochastics, 23(3), 729–759.

    Article  Google Scholar 

  • Cheng, X., Di Giacinto, M., & Wang, T. H. (2017). Optimal execution with uncertain order fills in almgren-chriss framework. Quantitative Finance, 17(1), 55–69.

    Article  Google Scholar 

  • Chiarella, C., He, X. Z., & Pellizzari, P. (2012). A dynamic analysis of the microstructure of moving average rules in a double auction market. Macroeconomic Dynamics, 16(4), 556–575.

    Article  Google Scholar 

  • Colaneri, K., Eksi, Z., Frey, R., & Szölgyenyi, M. (2020). Optimal liquidation under partial information with price impact. Stochastic Processes and Their Applications, 130(4), 1913–1946.

    Article  Google Scholar 

  • Dieci, R., & He, X. Z. (2018). Heterogeneous agent models in finance. Handbook of Computational Economics, 4, 257–328.

    Article  Google Scholar 

  • Ding, D. K., & Lau, S. T. (2001). An analysis of transactions data for the stock exchange of Singapore: Patterns, absolute price change, trade size and number of transactions. Journal of Business Finance & Accounting, 28(1–2), 151–174.

    Article  Google Scholar 

  • Egginton, J. F., Van Ness, B. F., & Van Ness, R. A. (2016). Quote stuffing. Financial Management, 45(3), 583–608.

    Article  Google Scholar 

  • Farjam, M., & Kirchkamp, O. (2018). Bubbles in hybrid markets: How expectations about algorithmic trading affect human trading. Journal of Economic Behavior & Organization, 146, 248–269.

    Article  Google Scholar 

  • Farmer, J. D., & Foley, D. (2009). The economy needs agent-based modelling. Nature, 460(7256), 685–686.

    Article  Google Scholar 

  • Forsyth, P. A. (2011). A Hamilton–jacobi–bellman approach to optimal trade execution. Applied Numerical Mathematics, 61(2), 241–265.

    Article  Google Scholar 

  • Forsyth, P. A., Kennedy, J. S., Tse, S. T., & Windcliff, H. (2012). Optimal trade execution: A mean quadratic variation approach. Journal of Economic Dynamics and Control, 36(12), 1971–1991.

    Article  Google Scholar 

  • Frino, A., Garcia, M., & Zhou, Z. (2020). Impact of algorithmic trading on speed of adjustment to new information: Evidence from interest rate derivatives. Journal of Futures Markets, 40(5), 749–760.

    Article  Google Scholar 

  • Gatheral, J., & Schied, A. (2013). Dynamical models of market impact and algorithms for order execution. Handbook on Systemic Risk, Jean-Pierre Fouque, Joseph A. Langsam, eds, 579–599.

  • Gatheral, J., & Schied, A. (2011). Optimal trade execution under geometric Brownian motion in the Almgren and Chriss framework. International Journal of Theoretical and Applied Finance, 14(03), 353–368.

    Article  Google Scholar 

  • Gatheral, J., Schied, A., & Slynko, A. (2012). Transient linear price impact and Fredholm integral equations. Mathematical Finance: An International Journal of Mathematics, Statistics and Financial Economics, 22(3), 445–474.

    Article  Google Scholar 

  • Gomber, P., & Zimmermann, K. (2018). Algorithmic trading in practice. Oxford University Press.

    Google Scholar 

  • Glosten, L. R., & Harris, L. E. (1988). Estimating the components of the bid/ask spread. Journal of financial Economics, 21(1), 123–142.

    Article  Google Scholar 

  • Graewe, P., & Horst, U. (2017). Optimal trade execution with instantaneous price impact and stochastic resilience. SIAM Journal on Control and Optimization, 55(6), 3707–3725.

    Article  Google Scholar 

  • Gsell, M. (2008). Assessing the impact of Algorithmic Trading on markets: A simulation approach (No. 2008/49). CFS Working Paper.

  • Guéant, O., & Lehalle, C. A. (2015). General intensity shapes in optimal liquidation. Mathematical Finance, 25(3), 457–495.

    Article  Google Scholar 

  • Hansen, K. B. (2020). The virtue of simplicity: On machine learning models in algorithmic trading. Big Data & Society, 7(1), 2053951720926558.

    Article  Google Scholar 

  • He, H., & Mamaysky, H. (2005). Dynamic trading policies with price impact. Journal of Economic Dynamics and Control, 29(5), 891–930.

    Article  Google Scholar 

  • Hendershott, T., Jones, C. M., & Menkveld, A. J. (2011). Does algorithmic trading improve liquidity? The Journal of Finance, 66(1), 1–33.

    Article  Google Scholar 

  • Hisata, Y., & Yamai, Y. (2000). Research toward the practical application of liquidity risk evaluation methods (pp. 83–128). Tokyo, Japan: Institute for Monetary and Economic Studies, Bank of Japan.

  • Jain, P. K. (2005). Financial market design and the equity premium: Electronic versus floor trading. The Journal of Finance, 60(6), 2955–2985.

    Article  Google Scholar 

  • Jin, Y. (2017). Optimal execution strategy and liquidity adjusted value-at-risk. Quantitative Finance, 17(8), 1147–1157.

    Article  Google Scholar 

  • Johnson, K., Pasquale, F., & Chapman, J. (2019). Artificial intelligence, machine learning, and bias in finance: Toward responsible innovation. Fordham l. Rev., 88, 499.

    Google Scholar 

  • Kelejian, H. H., & Mukerji, P. (2016). Does high frequency algorithmic trading matter for non-AT investors? Research in International Business and Finance, 37, 78–92.

    Article  Google Scholar 

  • Kirilenko, A. A., & Lo, A. W. (2013). Moore’s law versus murphy’s law: Algorithmic trading and its discontents. Journal of Economic Perspectives, 27(2), 51–72.

    Article  Google Scholar 

  • Luo, Q., Shi, Y., & Li, H. (2021a). Research on Portfolio Liquidation Strategy under Discrete Times. arXiv preprint arXiv:2103.15400.

  • Luo, Q., Shi, Y., Zhou, X., & Li, H. (2021b). Research on the effects of institutional liquidation strategies on the market based on multi-agent model. Computational Economics, 58(4), 1025–1049.

    Article  Google Scholar 

  • Ma, G., Siu, C. C., Zhu, S. P., & Elliott, R. J. (2020). Optimal portfolio execution problem with stochastic price impact. Automatica, 112, 108739.

    Article  Google Scholar 

  • Mandelbrot, B. (1972). Statistical methodology for nonperiodic cycles: From the covariance to R/S analysis. In Annals of economic and social measurement, (Vol 1, no 3, pp 259–290). NBER.

    Google Scholar 

  • McGroarty, F., Booth, A., Gerding, E., & Chinthalapati, V. L. (2019). High frequency trading strategies, market fragility and price spikes: An agent based model perspective. Annals of Operations Research, 282(1), 217–244.

    Article  Google Scholar 

  • McMillan, J. (2003). Reinventing the bazaar: A natural history of markets. WW Norton & Company.

  • Mizuta, T., & Horie, S. (2019). Mechanism by which active funds make market efficient investigated with agent-based model. Evolutionary and Institutional Economics Review, 16(1), 43–63.

    Article  Google Scholar 

  • Moazeni, S., Coleman, T. F., & Li, Y. (2013). Optimal execution under jump models for uncertain price impact. Journal of Computational Finance, 16(4), 1–44.

    Article  Google Scholar 

  • Obizhaeva, A. A., & Wang, J. (2013). Optimal trading strategy and supply/demand dynamics. Journal of Financial Markets, 16(1), 1–32.

    Article  Google Scholar 

  • Perold, A. F. (1988). The implementation shortfall: Paper versus reality. Journal of Portfolio Management, 14(3), 4.

    Article  Google Scholar 

  • Ponta, L., Pastore, S., & Cincotti, S. (2018). Static and dynamic factors in an information-based multi-asset artificial stock market. Physica a: Statistical Mechanics and Its Applications, 492, 814–823.

    Article  Google Scholar 

  • Reznik, N., & Pankratova, L. (2018). High-Frequency Trade as a Component of Algorithmic Trading: Market Consequences. In ICTERI Workshops (pp. 73–83).

  • Schied, A., & Schöneborn, T. (2009). Risk aversion and the dynamics of optimal liquidation strategies in illiquid markets. Finance and Stochastics, 13(2), 181–204.

    Article  Google Scholar 

  • Schmitt, N., & Westerhoff, F. (2017). Herding behaviour and volatility clustering in financial markets. Quantitative Finance, 17(8), 1187–1203.

    Article  Google Scholar 

  • Scholtus, M., Van Dijk, D., & Frijns, B. (2014). Speed, algorithmic trading, and market quality around macroeconomic news announcements. Journal of Banking & Finance, 38, 89–105.

    Article  Google Scholar 

  • Sornette, D., & Von der Becke, S. (2011). Crashes and high frequency trading. Swiss Finance Institute Research Paper, (11–63).

  • Tse, S. T., Forsyth, P. A., & Li, Y. (2014). Preservation of scalarization optimal points in the embedding technique for continuous time mean variance optimization. SIAM Journal on Control and Optimization, 52(3), 1527–1546.

    Article  Google Scholar 

  • Virgilio, G. (2017). Is high-frequency trading tiering the financial markets? Research in International Business and Finance, 41, 158–171.

    Article  Google Scholar 

  • Virgilio, G. P. M. (2019). High-frequency trading: A literature review. Financial Markets and Portfolio Management, 33(2), 183–208.

    Article  Google Scholar 

  • Weller, B. M. (2018). Does algorithmic trading reduce information acquisition? The Review of Financial Studies, 31(6), 2184–2226.

    Article  Google Scholar 

  • Yang, X., Zhang, J., & Ye, Q. (2020). Tick size and market quality: Simulations based on agent-based artificial stock markets. Intelligent Systems in Accounting, Finance and Management, 27(3), 125–141.

    Google Scholar 

Download references

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Handong Li.

Ethics declarations

Conflict of interest

The authors report no conflicts of interest. The authors alone are responsible for the content and writing of the paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix

See Tables 13, 14, 15 and 16

Table 13 Descriptive statistical results of the return of the 40 constituent stocks in the SSE 50 in 2019
Table 14 Results of the indicators of Stock 1 under different conditions
Table 15 Results of the indicators of Stock 2 under different conditions
Table 16 Results of the indicators of Stock 3 under different conditions

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, Q., Song, S. & Li, H. Research on the Effects of Liquidation Strategies in the Multi-asset Artificial Market. Comput Econ 62, 1721–1750 (2023). https://doi.org/10.1007/s10614-022-10316-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10614-022-10316-9

Keywords

Navigation