Skip to main content
Log in

Estimation of Rank-Ordered Regret Minimization Models

  • Published:
Computational Economics Aims and scope Submit manuscript

Abstract

This paper considers the estimation of random regret minimization models using rank-ordered choice data. By analyzing Monte Carlo simulations results, we find that the efficiency increases as we use additional information on the ranking. Compared with the multinomial logit model with utility maximization, the simulation results show that the standard random regret minimization model is slightly worse than the multinomial logit model based on both the mean bias and root mean squared error of the estimator of the model parameter \({{\varvec{\beta }}}\). When using long ranking choice data to estimate the random regret minimization model, based on the mean bias and root mean squared error of the estimator, we find that the rank-ordered random regret minimization model has advantages over the multinomial logit model and the standard random regret minimization model. Analysis of real data shows that our method is very effective in estimating model parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Allenby, G., & Rossi, P. (1991). Quality perceptions and asymmetric switching between brands. Marketing Science, 10, 185–204.

    Article  Google Scholar 

  • Beck, M. J., Chorus, C. G., Rose, J. M., & Hensher, D. A. (2013). Vehicle purchasing behavior of individuals and groups: Regret or reward? Journal of Transport Economics and Policy, 47, 475–492.

    Google Scholar 

  • Beggs, S., Cardell, S., & Hausman, J. (1981). Assessing the potential demand for electric cars. Journal of Econometrics, 16, 1–19.

    Article  Google Scholar 

  • Ben, A. M., & Lerman, S. R. (1985). Discrete choice analysis: Theory and application to travel demand. Cambridge, MA: The MIT Press.

    Google Scholar 

  • Benoit, D. F., Aelst, S. V., & Poel, D. V. D. (2016). Outlier-robust bayesian multinomial choice modeling. Journal of Applied Econometrics, 31, 1445–1466.

    Article  Google Scholar 

  • Beresteanu, A., & Zincenko, F. (2018). Efficiency gains in rank-ordered multinomial logit models. Oxford Bulletin of Economics and Statistics, 80, 122–134.

    Article  Google Scholar 

  • Bjalkebring, P., Vastfjall, D., Svenson, O., & Slovic, P. (2016). Regulation of experienced and anticipated regret in daily decision making. Emotion, 16, 381–386.

    Article  Google Scholar 

  • Boeri, M., & Longo, A. (2017). The importance of regret minimization in the choice for renewable energy programmes: Evidence from a discrete choice experiment. Energy Economics, 63, 253–260.

    Article  Google Scholar 

  • Burgette, L. F., & Nordheim, E. V. (2012). The trace restriction: An alternative identification strategy for the Bayesian multinomial probit model. Journal of Business and Economic Statistics, 30, 404–410.

    Article  Google Scholar 

  • Chorus, C. G. (2010). A new model of random regret minimization. European Journal of Transport and Infrastructure Research, 10, 181–196.

    Google Scholar 

  • Chorus, C. G., Arentze, T. A., & Timmermans, H. J. P. (2008). A random regret minimization model of travel choice. Transportation Research Part B, 42, 1–18.

    Article  Google Scholar 

  • Chorus, C. G., Arentze, T. A., & Timmermans, H. J. P. (2009). Spatial choice: A matter of utility or regret? Environment and Planning B: Planning and Design, 36, 538–551.

    Article  Google Scholar 

  • Chorus, C. G., & Bierlaire, M. (2013). An empirical comparison of travel choice models that generate compromise effects. Transportation, 40, 549–562.

    Article  Google Scholar 

  • Chorus, C. G., Cranenburgh, S. V., & Dekker, T. (2011). Random regret minimization for consumer choice modeling: Assessment of empirical evidence. Journal of Business Research, 67, 2428–2436.

    Article  Google Scholar 

  • Chorus, C. G., Koetse, M. J., & Hoen, A. (2013). Consumer preferences for alternative fuel vehicles: Comparing a utility maximization and a regret minimization model. Energy Policy, 61, 901–908.

    Article  Google Scholar 

  • Fok, D., Paap, R., & Dijka, B. V. (2012). A rank-ordered logit model with unobserved heterogeneity in ranking capabilities. Journal of Applied Econometrics, 27, 831–846.

    Article  Google Scholar 

  • Hauser, J. R., & Wernerfelt, B. (1990). An evaluation cost model of consideration sets. Journal of Consumer Research, 16, 393–408.

    Article  Google Scholar 

  • Kim, J., Rasouli, S., & Timmermans, H. (2017). Satisfaction and uncertainty in car-sharing decisions: An integration of hybrid choice and random regret-based models. Transportation Research Part A: Policy and Practice, 95, 13–33.

    Google Scholar 

  • Loomes, G., & Sugden, R. (1982). Regret theory: An alternative theory of rational choice under uncertainty. The Economic Journal, 92, 805–824.

    Article  Google Scholar 

  • Luce, R. D. (1959). Individual choice behavior: A theoretical analysis. New York: Wiley.

    Google Scholar 

  • Luce, R. D., & Suppes, P. (1965). Preference, utility, and subjective probability. In R. D. Luce, R. R. Bush, & E. Galanter (Eds.), Handbook of mathematical psychology, Ch. 19 (Vol. 3, pp. 249–410). Hoboken: Wiley.

    Google Scholar 

  • McFadden, D. (1973). Conditional logit analysis of qualitative choice-behavior. In P. Zarembka (Ed.), Frontiers in econometrics (pp. 105–142). New York: Academic Press.

    Google Scholar 

  • Newey, W. K., & McFadden, D. (1994). Large sample estimation and hypothesis testing. In R. F. Engle & D. McFadden (Eds.), Handbook of econometrics, chap. 36 (Vol. 4, pp. 2111–2245). Amsterdam: Elsevier.

    Google Scholar 

  • Shocker, A. J., Ben-Akiva, M., & Boccara, B. (1991). Consideration set influences on consumer decision making and choice: Issues, models, and suggestions. Marketing Letters, 2, 181–197.

    Article  Google Scholar 

  • Skelton, A. C. H., & Allwood, J. M. (2017). Questioning demand: A study of regretted purchases in Great Britain. Ecological Economics, 131, 499–509.

    Article  Google Scholar 

  • Wooldridge, J. M. (2010). Econometric analysis of cross section and panel data (2nd ed.). Cambridge, MA: MIT Press.

    Google Scholar 

  • Yan, J., & Yoo, H., II. (2019). Semiparametric estimation of the random utility model with rank-ordered choice data. Journal of Econometrics, 211, 414–438.

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank referees, editors, and associate editors for their constructive comments and suggestions, which improve the manuscript signifificantly.

Funding

The work is supported by Guangxi First-class Discipline Statistics Construction Project Fund, the natural science foundation of Inner Mongolia Autonomous Region (2022MS01007) and the research project of colleges and universities in Inner Mongolia Autonomous Region (NJSY21569).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuling Li.

Ethics declarations

Conflict of interest

The authors declared that they have no conflicts of interest to this work. We declare that we do not have any commercial or associative interest that represents a conflict of interest in connection with the work submitted.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: Proofs

Appendix: Proofs

1.1 A1. Proof of Lemma 3.1

Before proving Lemma 3.1, we first state that for any \({{\varvec{b}}}\in R^{M\times 1}\), we have Lemma A1:

Lemma A1

Under Assumption 3.1, \(Q_{\{j_{1},\ldots ,j_{k-1}\}}({{\varvec{x}}}_{n},{{\varvec{b}}})\) is positive semi-definite for any value of \({{\varvec{x}}}_{n}=({{\varvec{x}}}^{'}_{1,n},\ldots ,{{\varvec{x}}}^{'}_{J,n})\in R^{1\times JM},\ k\in \{1,\ldots ,K\}\) and \(\{j_{1},\ldots ,j_{k-1}\}\subseteq \mathbb {J}\).

Proof

Let

$$\begin{aligned} \begin{aligned}&Q_{\{j_{1},\ldots ,j_{k-1}\}}({{\varvec{x}}}_{n},{{\varvec{b}}})\\&\quad =\dfrac{\partial ^{2} R_{j_{k},n}}{\partial {{\varvec{b}}}\partial {{\varvec{b}}}^{'}} + \dfrac{\sum \limits _{l\in \mathbb {J}\backslash \{j_{1},\ldots ,j_{k-1}\} }\exp (-R_{l,n}) \left( \dfrac{\partial R_{l,n}}{\partial {{\varvec{b}}}}\dfrac{\partial R_{l,n}}{\partial {{\varvec{b}}}^{'}}-\dfrac{\partial ^{2} R_{l,n}}{\partial {{\varvec{b}}}\partial {{\varvec{b}}}^{'}}\right) }{\sum \limits _{l\in \mathbb {J}\backslash \{j_{1},\ldots ,j_{k-1}\} }\exp (-R_{l,n})}\\&\qquad - \dfrac{\Big (\sum \limits _{l\in \mathbb {J}\backslash \{j_{1},\ldots ,j_{k-1}\} }\exp (-R_{l,n}) \dfrac{\partial R_{l,n}}{\partial {{\varvec{b}}}}\Big )\Big (\sum \limits _{l\in \mathbb {J}\backslash \{j_{1},\ldots ,j_{k-1}\} }\exp (-R_{l,n}) \dfrac{\partial R_{l,n}}{\partial {{\varvec{b}}}^{'}}\Big )}{\Big [\sum \limits _{l\in \mathbb {J}\backslash \{j_{1},\ldots ,j_{k-1}\} }\exp (-R_{l,n})\Big ]^{2}}\\&\quad =Q^{1}_{\{j_{1},\ldots ,j_{k-1}\}}({{\varvec{x}}}_{n},{{\varvec{b}}})+Q^{2}_{\{j_{1},\ldots ,j_{k-1}\}}({{\varvec{x}}}_{n},{{\varvec{b}}}), \end{aligned} \end{aligned}$$

where

$$\begin{aligned} \begin{aligned}&Q^{1}_{\{j_{1},\ldots ,j_{k-1}\}}({{\varvec{x}}}_{n},{{\varvec{b}}})= \dfrac{\sum \limits _{l\in \mathbb {J}\backslash \{j_{1},\ldots ,j_{k-1}\} }\exp (-R_{l,n}) \dfrac{\partial R_{l,n}}{\partial {{\varvec{b}}}}\dfrac{\partial R_{l,n}}{\partial {{\varvec{b}}}^{'}}}{\sum \limits _{l\in \mathbb {J}\backslash \{j_{1},\ldots ,j_{k-1}\} }\exp (-R_{l,n})}\\&\quad - \dfrac{\Big (\sum \limits _{l\in \mathbb {J}\backslash \{j_{1},\ldots ,j_{k-1}\} }\exp (-R_{l,n}) \dfrac{\partial R_{l,n}}{\partial {{\varvec{b}}}}\Big )\Big (\sum \limits _{l\in \mathbb {J}\backslash \{j_{1},\ldots ,j_{k-1}\} }\exp (-R_{l,n}) \dfrac{\partial R_{l,n}}{\partial {{\varvec{b}}}^{'}}\Big )}{\Big [\sum \limits _{l\in \mathbb {J}\backslash \{j_{1},\ldots ,j_{k-1}\} }\exp (-R_{l,n})\Big ]^{2}} \end{aligned} \end{aligned}$$

and

$$\begin{aligned} \begin{aligned} Q^{2}_{\{j_{1},\ldots ,j_{k-1}\}}({{\varvec{x}}}_{n},{{\varvec{b}}})= \dfrac{\sum \limits _{l\in \mathbb {J}\backslash \{j_{1},\ldots ,j_{k-1}\} }\exp (-R_{l,n}) \left( \dfrac{\partial ^{2} R_{j_{k},n}}{\partial {{\varvec{b}}}\partial {{\varvec{b}}}^{'}}-\dfrac{\partial ^{2} R_{l,n}}{\partial {{\varvec{b}}}\partial {{\varvec{b}}}^{'}}\right) }{\sum \limits _{l\in \mathbb {J}\backslash \{j_{1},\ldots ,j_{k-1}\} }\exp (-R_{l,n})}. \end{aligned} \end{aligned}$$

\(\square \)

First, we point out that \(Q^{1}_{\{j_{1},\ldots ,j_{k-1}\}}({{\varvec{x}}}_{n},{{\varvec{b}}})\) is positive semi-definite. For any \({{\varvec{x}}}_{n}=({{\varvec{x}}}^{'}_{1,n},\ldots ,{{\varvec{x}}}^{'}_{J,n})\) and \(\{j_{1},\ldots ,j_{k-1}\}\), we define the weights:

$$\begin{aligned} w_{l}({{\varvec{x}}}_{n})=\dfrac{\exp (-R_{l,n}) }{\sum \limits _{j\in \mathbb {J}\backslash \{j_{1},\ldots ,j_{k-1}\} }\exp (-R_{j,n})}. \end{aligned}$$

Notably, \(w_{l}({{\varvec{x}}}_{n})>0\) and \(\sum \limits _{l\in \mathbb {J}\backslash \{j_{1},\ldots ,j_{k-1}\}}w_{l}({{\varvec{x}}}_{n})=1\). Thus, for any constant vector \(c\in R^{M\times 1}\), we have

$$\begin{aligned}&c^{'}Q^{1}_{\{j_{1},\ldots ,j_{k}\}}({{\varvec{x}}}_{n},b)c\nonumber \\&\quad = \dfrac{\sum \limits _{l\in \mathbb {J}\backslash \{j_{1},\ldots ,j_{k-1}\} }\exp (-R_{l,n}) (c^{'}\dfrac{\partial R_{l,n}}{\partial {{\varvec{b}}}})^{2}}{\sum \limits _{l\in \mathbb {J}\backslash \{j_{1},\ldots ,j_{k-1}\} }\exp (-R_{l,n})} - \dfrac{\Big (\sum \limits _{l\in \mathbb {J}\backslash \{j_{1},\ldots ,j_{k-1}\} }\exp (-R_{l,n}) (c^{'}\dfrac{\partial R_{l,n}}{\partial {{\varvec{b}}}})\Big )^{2}}{\Big [\sum \limits _{l\in \mathbb {J}\backslash \{j_{1},\ldots ,j_{k-1}\} }\exp (-R_{l,n})\Big ]^{2}}\nonumber \\&\quad =\sum \limits _{l\in \mathbb {J}\backslash \{j_{1},\ldots ,j_{k-1}\} }w_{l}({{\varvec{x}}}_{n})(c^{'}\dfrac{\partial R_{l,n}}{\partial b})^{2} - \Big [\sum \limits _{l\in \mathbb {J}\backslash \{j_{1},\ldots ,j_{k-1}\} }w_{l}({{\varvec{x}}}_{n})(c^{'}\dfrac{\partial R_{l,n}}{\partial b})\Big ]^{2}\nonumber \\&\quad =\sum \limits _{l\in \mathbb {J}\backslash \{j_{1},\ldots ,j_{k-1}\}}[(c^{'}\dfrac{\partial R_{l,n}}{\partial b}) -\lambda _{\{j_{1},\ldots ,j_{k-1}\}}({{\varvec{x}}}_{n};c)]^{2}w_{l}({{\varvec{x}}}_{n})\ \ \end{aligned}$$
(a1)

where \(\lambda _{\{j_{1},\ldots ,j_{k-1}\}}({{\varvec{x}}}_{n};c) =\sum \limits _{t\in \mathbb {J}\backslash \{j_{1},\ldots ,j_{k-1}\}}(c^{'}\dfrac{\partial R_{t,n}}{\partial b})w_{t}({{\varvec{x}}}_{n})\). The last expression means that \(Q^{1}_{\{ j_{ 1},\ldots ,j_{ k}\}}({{\varvec{x}}}_{ n} , b) \) is positive semi-definite. Next, we prove that \(Q^{2}_{\{ j_{ 1},\ldots ,j_{ k}\}}({{\varvec{x}}}_{n} , b) \) is also positive semi-definite. We have

$$\begin{aligned} \begin{aligned} Q^{2}_{\{j_{1},\ldots ,j_{k-1}\}}({{\varvec{x}}}_{n},{{\varvec{b}}})= \dfrac{\sum \limits _{l\in \mathbb {J}\backslash \{j_{1},\ldots ,j_{k-1}\} }\exp (-R_{l,n}) (\dfrac{\partial ^{2} R_{j_{k},n}}{\partial {{\varvec{b}}}\partial {{\varvec{b}}}^{'}}-\dfrac{\partial ^{2} R_{l,n}}{\partial {{\varvec{b}}}\partial {{\varvec{b}}}^{'}})}{\sum \limits _{l\in \mathbb {J}\backslash \{j_{1},\ldots ,j_{k-1}\} }\exp (-R_{l,n})}. \end{aligned} \end{aligned}$$

where \(\dfrac{\partial ^{2} R_{l,n}}{\partial {{\varvec{b}}}\partial {{\varvec{b}}}^{'}},\ l=1,\ldots ,J\) are diagonal matrices with dimensions of \(M\times M\) and the m-th component on the diagonal is \(\dfrac{\partial ^{2} R_{l,n}}{\partial ^{2} {{\varvec{b}}}_{m}}, m=1,\ldots ,M\). For any \(l\in \mathbb {J}\backslash \{j_{1},\ldots ,j_{k-1}\}\), Assumption 3.1 means that \(\dfrac{\partial ^{2} R_{j_{k},n}}{\partial {{\varvec{b}}}\partial {{\varvec{b}}}^{'}}-\dfrac{\partial ^{2} R_{l,n}}{\partial {{\varvec{b}}}\partial {{\varvec{b}}}^{'}}\) is non-negative definite, so \(Q^{2}_{\{j_{1},\ldots ,j_{k}\}}({{\varvec{x}}}_{n},b)\) is positive semi-definite. The proof of Lemma A1 is completed.

Next, we prove part (a) of Lemma 3.1. We remark that \(E\Big [d_{y,n}^{K}Q_{\{j_{1},\ldots ,j_{k-1}\}}({{\varvec{x}}}_{n},{{\varvec{b}}})\Big ]\) is positive semi-definite (Lemma A1). Next, we show that \(\sum \limits _{y_{n}^{K}\in \mathbb {J}^{K}}E\Big [d_{y,n}^{K}Q_{\{j_{1},\ldots ,j_{k-1}\}}({{\varvec{x}}}_{n},{{\varvec{b}}})\Big ]\) is positive definite, therefore, we only need to verify that \(\sum \limits _{y_{n}^{K}\in \mathbb {J}^{K}}E\Big [d_{y,n}^{K}Q^{1}_{\{j_{1},\ldots ,j_{k-1}\}}({{\varvec{x}}}_{n},{{\varvec{b}}})\Big ]\) is positive definite.

By Assumption 3.1, for any \(c\in R^{M\times 1}\setminus \{0\}\), there is \(y^{K*}=\{j_{1}^{*},\ldots ,j_{K}^{*}\} \) and \({\bar{l}}_{1}, {\bar{l}}_{2}\in \mathbb {J}\backslash \{j_{1}^{*},\ldots ,j_{K-1}^{*}\}\), so that

$$\begin{aligned} \begin{aligned} 0<E\{\Big [c^{'}(\dfrac{\partial R_{{\bar{l}}_{1},n}}{\partial b}-\dfrac{\partial R_{{\bar{l}}_{2},n}}{\partial b})\Big ]^{2}\}<\infty . \end{aligned} \end{aligned}$$

The above equation is rewritten as follows

$$\begin{aligned} \begin{aligned} E\left\{ \Big [c^{'}\left( \dfrac{\partial R_{{\bar{l}}_{1},n}}{\partial b}-\dfrac{\partial R_{{\bar{l}}_{2},n}}{\partial b}\right) \Big ]^{2} \right\} =\int _{\mathscr {D}}\Big [c^{'}\left( \dfrac{\partial R_{{\bar{l}}_{1}}}{\partial b}-\dfrac{\partial R_{{\bar{l}}_{2}}}{\partial b}\right) \Big ]^{2}f({{\varvec{x}}})v(d{{\varvec{x}}}), \end{aligned} \end{aligned}$$

where \(f({{\varvec{x}}})\) is the density function of \({{\varvec{x}}}\) with respect to a \(\sigma \)-finite measure \(v(\cdot )\), and \(\mathscr {D}= \left\{ {{\varvec{x}}}=({{\varvec{x}}}_{1}^{'},\ldots ,{{\varvec{x}}}_{J}^{'})\in R^{1\times JM}:\left| c^{'}\left( \dfrac{\partial R_{{\bar{l}}_{1}}}{\partial b}-\dfrac{\partial R_{{\bar{l}}_{2}}}{\partial b}\right) \right| >0 \right\} \). We denote

$$\begin{aligned} \mathscr {D}_{s}=\{{{\varvec{x}}}\in R^{1\times JM}:\left| c^{'}\left( \dfrac{\partial R_{{\bar{l}}_{1}}}{\partial b}-\dfrac{\partial R_{{\bar{l}}_{2}}}{\partial b}\right) \right| \ge \frac{1}{s}\}, \end{aligned}$$

where \(s\in \mathbb {N}\), \(\mathscr {D}=\cup _{s\in \mathbb {N}}\mathscr {D}_{s}\). Since

$$\begin{aligned} \lim \limits _{s \rightarrow +\infty }\int _{\mathscr {D}_{s}}\left[ c^{'}\left( \dfrac{\partial R_{{\bar{l}}_{1}}}{\partial b}-\dfrac{\partial R_{{\bar{l}}_{2}}}{\partial b}\right) \right] ^{2}f({{\varvec{x}}})v(d{{\varvec{x}}}) =\int _{\mathscr {D}}\left[ c^{'}\left( \dfrac{\partial R_{{\bar{l}}_{1}}}{\partial b}-\dfrac{\partial R_{{\bar{l}}_{2}}}{\partial b}\right) \right] ^{2}f({{\varvec{x}}})v(d{{\varvec{x}}})>0 \end{aligned}$$

by the Lebesgue’s dominated convergence theorem, there exists \(s^{*}\in \mathbb {N}\) such that

$$\begin{aligned} \int _{\mathscr {D}_{s^{*}}}\left[ c^{'}\left( \dfrac{\partial R_{{\bar{l}}_{1}}}{\partial b}-\dfrac{\partial R_{{\bar{l}}_{2}}}{\partial b}\right) \right] ^{2}f({{\varvec{x}}})v(d{{\varvec{x}}})>0, \end{aligned}$$

The above equation means that \(\int _{\mathscr {D}_{s^{*}}}f({{\varvec{x}}})v(d{{\varvec{x}}})>0\). We define

$$\begin{aligned} \mathscr {D}_{s^{*},l}=\left\{ {{\varvec{x}}}\in R^{1\times JM}:\left| \left( c^{'}\dfrac{\partial R_{{\bar{l}}_{l}}}{\partial b}\right) -\lambda _{\{j_{1}^{*},\ldots ,j_{K-1}^{*}\}}({{\varvec{x}}};c)\right| \ge \frac{1}{2s^{*}} \right\} \end{aligned}$$

where \(l=1,2\). Because

$$\begin{aligned} \left| c^{'}\left( \dfrac{\partial R_{{\bar{l}}_{1}}}{\partial b}-\dfrac{\partial R_{{\bar{l}}_{2}}}{\partial b}\right) \right| \le \left| c^{'}\dfrac{\partial R_{{\bar{l}}_{1}}}{\partial b}-\lambda _{\{j_{1}^{*},\ldots ,j_{K-1}^{*}\}}({{\varvec{x}}};c)\right| +\left| c^{'}\dfrac{\partial R_{{\bar{l}}_{2}}}{\partial b}-\lambda _{\{j_{1}^{*},\ldots ,j_{K-1}^{*}\}}({{\varvec{x}}};c)\right| , \end{aligned}$$

So \(\mathscr {D}_{s^{*}}\subseteq \mathscr {D}_{s^{*},1}\cup \mathscr {D}_{s^{*},2}\), then, we have

$$\begin{aligned} 0<\int _{\mathscr {D}_{s^{*}}}f({{\varvec{x}}})v(d{{\varvec{x}}}) \le \int _{\mathscr {D}_{s^{*},1}}f({{\varvec{x}}})v(d{{\varvec{x}}}) +\int _{\mathscr {D}_{s^{*},2}}f({{\varvec{x}}})v(d{{\varvec{x}}}). \end{aligned}$$

Without loss of generality, assuming that \(\int _{\mathscr {D}_{s^{*},1}}f({{\varvec{x}}})v(d{{\varvec{x}}})>0\), we have

$$\begin{aligned} E\Big [\sum \limits _{y_{n}^{K}\in \mathbb {J}^{K}}d_{y,n}^{K}Q^{1}_{\{j_{1},\ldots ,j_{k-1}\}}({{\varvec{x}}}_{n},{{\varvec{b}}})\Big ]= & {} E\Big [\sum \limits _{y_{n}^{K}\in \mathbb {J}^{K}\setminus \{y_{n}^{*K}\}}d_{y,n}^{K}Q^{1}_{\{j_{1},\ldots ,j_{k-1}\}}({{\varvec{x}}}_{n},{{\varvec{b}}})\Big ]\\&+E\Big [d_{y^{*},n}^{K}Q^{1}_{\{j_{1},\ldots ,j_{k-1}\}}({{\varvec{x}}}_{n},{{\varvec{b}}})\Big ]. \end{aligned}$$

According to Lemma 3.1, we know that the first term at the right end of the equation is positive semi-definite. Next, we prove that the second term is positive definite. According to the law of iterated expectation, we have

$$\begin{aligned}&c^{'}E[d_{y^{*},n}^{K}Q^{1}_{\{j_{1^{*}},\ldots ,j_{K-1^{*}}\}}({{\varvec{x}}}_{n},b)]c\\&\quad =\int Pr(d_{y^{*},n}^{K}=1|{{\varvec{x}}};{{\varvec{\beta }}})[c^{'}Q^{1}_{\{j_{1^{*}},\ldots ,j_{K-1^{*}}\}}({{\varvec{x}}},b)c]f({{\varvec{x}}})v(d{{\varvec{x}}})\\&\quad =\int Pr(d_{y^{*},n}^{K}=1|{{\varvec{x}}};{{\varvec{\beta }}})\\&\qquad \left\{ \sum \limits _{l\in \mathscr {J}\backslash \{j_{1^{*}},\ldots ,j_{K-1^{*}}\}} \left[ \left( c^{'}\dfrac{\partial R_{l}}{\partial b}\right) -\lambda _{\{j_{1^{*}},\ldots ,j_{K-1^{*}}\}}({{\varvec{x}}};c)\right] ^{2}w_{l}({{\varvec{x}}})\right\} f({{\varvec{x}}})v(d{{\varvec{x}}})\\&\quad \ge \left( \frac{1}{2s^{*}}\right) ^{2}\int _{\mathscr {D}_{s^*,1}} Pr(d_{y^{*},n}^{K}=1|{{\varvec{x}}};{{\varvec{\beta }}})w_{{\bar{l}}_{1}}({{\varvec{x}}})f({{\varvec{x}}})v(d{{\varvec{x}}})\\&\quad \ge \left( \frac{1}{2s^{*}}\right) ^{2}\Big [\min \limits _{{{\varvec{x}}}\in \mathscr {D}_{s^*,1}} Pr(d_{y^{*},n}^{K}=1|{{\varvec{x}}};{{\varvec{\beta }}}) w_{{\bar{l}}_{1}}({{\varvec{x}}})\Big ]\int _{\mathscr {D}_{s^*,1}}f({{\varvec{x}}})v(d{{\varvec{x}}})>0. \end{aligned}$$

The second equality follows from expression (a1). We highlight that \(\min \limits _{{{\varvec{x}}}\in \mathscr {D}_{s^*,1}}Pr(d_{y^{*},n}^{K}=1|{{\varvec{x}}};{{\varvec{\beta }}}) w_{{\bar{l}}_{1}}({{\varvec{x}}})>0\) is positive because \(Pr(d_{y^{*},n}^{K}=1|{{\varvec{x}}};{{\varvec{\beta }}}) w_{{\bar{l}}_{1}}({{\varvec{x}}})\) is continuous and strictly positive. Therefore, \(E[d_{y^{*},n}^{K}Q^{1}_{\{j_{1^{*}},\ldots ,j_{K-1^{*}}\}}({{\varvec{x}}}_{i},b)]\) is positive definite, and part (a) of Lemma 3.1 holds.

The following derivation proves that part (b) of Lemma 3.1 holds, we have

$$\begin{aligned} \begin{aligned} \mathop {I^{K}({{\varvec{\beta }}})}&=\sum \limits _{y_{n}^{K}\in \mathbb {J}^{K}}\sum \limits _{k=1}^{K-1} E\Big [d_{y,n}^{K}Q^{1}_{\{j_{1},\ldots ,j_{k-1}\}}({{\varvec{x}}}_{n},{{\varvec{\beta }}})\Big ]+\sum \limits _{y_{n}^{K}\in \mathbb {J}^{K}} E\Big [d_{y,n}^{K}Q^{1}_{\{j_{1},\ldots ,j_{k-1}\}}({{\varvec{x}}}_{n},{{\varvec{\beta }}})\Big ]\\&\quad +\sum \limits _{y_{n}^{K}\in \mathbb {J}^{K}}\sum \limits _{k=1}^{K} E\Big [d_{y,n}^{K}Q^{2}_{\{j_{1},\ldots ,j_{k-1}\}}({{\varvec{x}}}_{n},{{\varvec{\beta }}})\Big ] \end{aligned} \end{aligned}$$

In the above equation, the first and third terms are positive semi-definite according to Lemma A1, and the second term is positive definite based on the previous result. Therefore, \(\mathop {I^{K}(\beta )}\) is positive definite, and part (b) of Lemma 3.1 holds.

1.2 A2. Proof of Theorem 3.1

Without the loss of generality, we first consider the case of \({\widetilde{K}}=K-1\) for the general case of \(1\le {\widetilde{K}}<K\), and obtain similar conclusions by induction. We have

$$\begin{aligned} \begin{aligned} \mathop {I^{K}({{\varvec{\beta }}})}&=\sum \limits _{y_{n}^{K}\in \mathbb {J}^{K}}\sum \limits _{k=1}^{K} E\Big [d_{y,n}^{K}Q_{\{j_{1},\ldots ,j_{k-1}\}}({{\varvec{x}}}_{n},{{\varvec{\beta }}})\Big ]\\&=\sum \limits _{y_{n}^{K}\in \mathbb {J}^{K}}\sum \limits _{k=1}^{K-1}E\Big [d_{y,n}^{K}Q_{\{j_{1},\ldots ,j_{k-1}\}}({{\varvec{x}}}_{n},{{\varvec{\beta }}})\Big ] +\sum \limits _{y_{n}^{K}\in \mathbb {J}^{K}}E\Big [d_{y,n}^{K}Q_{\{j_{1},\ldots ,j_{K-1}\}}({{\varvec{x}}}_{n},{{\varvec{\beta }}})\Big ]. \end{aligned} \end{aligned}$$

Furthermore,

$$\begin{aligned} \begin{aligned}&\sum \limits _{y_{n}^{K}\in \mathbb {J}^{K}}\sum \limits _{k=1}^{K-1}E\Big [d_{y,n}^{K}Q_{\{j_{1},\ldots ,j_{k-1}\}}({{\varvec{x}}}_{n},{{\varvec{\beta }}})\Big ]\\&\quad =\sum \limits _{k=1}^{K-1}\sum \limits _{y_{n}^{K-1}\in \mathbb {J}^{K-1}}E\Big [ \Big (\sum \limits _{l\in \mathbb {J}\backslash \{j_{1},\ldots ,j_{K-1}\}} d_{\{j_{1},\ldots ,j_{K-1},l\},n}^{K}\Big )Q_{\{j_{1},\ldots ,j_{k-1}\}}({{\varvec{x}}}_{n},{{\varvec{\beta }}})\Big ]\\&\quad =\sum \limits _{y_{n}^{K}\in \mathbb {J}_{K}}\sum \limits _{k=1}^{K-1}E\Big [d_{y,n}^{K-1}Q_{\{j_{1},\ldots ,j_{k-1}\}}({{\varvec{x}}}_{n},{{\varvec{\beta }}})\Big ]\\&\quad =\mathop {I^{K-1}({{\varvec{\beta }}})}. \end{aligned} \end{aligned}$$

The first equation holds because \(\sum \limits _{y_{n}^{K-1}\in \mathbb {J}^{K-1}}\sum \limits _{l\in \mathbb {J}\backslash \{j_{1},\ldots ,j_{K-1}\}}=\sum \limits _{y_{n}^{K}\in \mathbb {J}^{K}}\) and the second equation holds based on \(d_{\{j_{1},\ldots ,j_{K-1}\},n}^{K-1}=\sum \limits _{l\in \mathbb {J}\backslash \{j_{1},\ldots ,j_{K-1}\}}d_{\{j_{1},\ldots ,j_{K-1},l\},n}^{K}\).

So

$$\begin{aligned} \begin{aligned} \mathop {I^{K}({{\varvec{\beta }}})}-\mathop {I^{K-1}({{\varvec{\beta }}})}= \sum \limits _{y_{n}^{K}\in \mathbb {J}_{K}}E\Big [d_{y,n}^{K}Q_{\{j_{1},\ldots ,j_{K-1}\}}({{\varvec{x}}}_{n},{{\varvec{\beta }}})\Big ]. \end{aligned} \end{aligned}$$

According to Lemma 3.1(a), \(\mathop {I^{K}({{\varvec{\beta }}})}-\mathop {I^{K-1}({{\varvec{\beta }}})}\) is obviously positive definite.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, C., Li, Y. Estimation of Rank-Ordered Regret Minimization Models. Comput Econ 62, 1611–1630 (2023). https://doi.org/10.1007/s10614-022-10313-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10614-022-10313-y

Keywords

Navigation