Skip to main content
Log in

Spatial Interactions and the Spread of COVID-19: A Network Perspective

  • Published:
Computational Economics Aims and scope Submit manuscript

Abstract

We use unique data on the travel history of confirmed patients at a daily frequency across 31 provinces in China to study how spatial interactions influence the geographic spread of pandemic COVID-19. We develop and simultaneously estimate a structural model of dynamic disease transmission network formation and spatial interaction. This allows us to understand what externalities the disease risk associated with a single place may create for the entire country. We find a positive and significant spatial interaction effect that strongly influences the duration and severity of pandemic COVID-19. And there exists heterogeneity in this interaction effect: the spatial spillover effect from the source province is significantly higher than from other provinces. Further counterfactual policy analysis shows that targeting the key province can improve the effectiveness of policy interventions for containing the geographic spread of pandemic COVID-19, and the effect of such targeted policy decreases with an increase in the time of delay.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Notes

  1. We also conduct a robustness check on the selection of the sample period in Sect. 4.3.

  2. If we aggregate the individual-level observations to the city level, it would consist of 3,171,168 city-pair observations for 364 Chinese cities in the sample period, which would be huge computation burden in the following estimation.

  3. We appreciate the insights provided by an anonymous reviewer on this issue.

References

  • Adams, P., Hurd, M. D., McFadden, D., Merrill, A., & Ribeiro, T. (2003). Healthy, wealthy, and wise? Tests for direct causal paths between health and socioeconomic status. Journal of Econometrics, 112(1), 3–56.

    Article  Google Scholar 

  • Adda, J. (2016). Economic activity and the spread of viral diseases: Evidence from high frequency data. The Quarterly Journal of Economics, 131(2), 891–941.

    Article  Google Scholar 

  • Aslam, M. (2021). Analyzing wind power data using analysis of means under neutrosophic statistics. Soft Computing, 25(10), 7087–7093.

    Article  Google Scholar 

  • Aslam, M., Arif, O. H., & Sherwani, R. A. K. (2020). New diagnosis test under the neutrosophic statistics: An application to diabetic patients. BioMed Research International. https://doi.org/10.1155/2020/2086185

    Article  Google Scholar 

  • Aslam, M., Bantan, R. A., & Khan, N. (2019). Design of a new attribute control chart under neutrosophic statistics. International Journal of Fuzzy Systems, 21(2), 433–440.

    Article  Google Scholar 

  • Aslam, M., Rao, G. S., Saleem, M., Sherwani, R. A. K., & Jun, C. H. (2021). Monitoring mortality caused by COVID-19 using gamma-distributed variables based on generalized multiple dependent state sampling. Computational and Mathematical Methods in Medicine. https://doi.org/10.1155/2021/6634887

    Article  Google Scholar 

  • Ballester, C., Calvó-Armengol, A., & Zenou, Y. (2006). Who’s who in networks. Wanted: The key player. Econometrica, 74(5), 1403–1417.

    Article  Google Scholar 

  • Basu, S., & Sen, S. (2022). COVID 19 pandemic, socio-economic behaviour and infection characteristics: An inter-country predictive study using deep learning. Computational Economics. https://doi.org/10.1007/s10614-021-10223-5

    Article  Google Scholar 

  • Bouveret, G., & Mandel, A. (2021). Social interactions and the prophylaxis of SI epidemics on networks. Journal of Mathematical Economics, 93, 102486.

    Article  Google Scholar 

  • Bramoullé, Y., Djebbari, H., & Fortin, B. (2020). Peer effects in networks: A survey. Annual Review of Economics, 12, 603–629.

    Article  Google Scholar 

  • Brockmann, D., & Helbing, D. (2013). The hidden geometry of complex, network-driven contagion phenomena. Science, 342(6164), 1337–1342.

    Article  Google Scholar 

  • Chen, J., Ye, J., Du, S., & Yong, R. (2017). Expressions of rock joint roughness coefficient using neutrosophic interval statistical numbers. Symmetry, 9(7), 123.

    Article  Google Scholar 

  • Desbordes, R. (2021). Spatial dynamics of major infectious diseases outbreaks: A global empirical assessment. Journal of Mathematical Economics, 93, 102493.

    Article  Google Scholar 

  • Dobson, A. P., Pimm, S. L., Hannah, L., Kaufman, L., Ahumada, J. A., Ando, A. W., Bernstein, A., Busch, J., Daszak, P., Engelmann, J., Kinnaird, M. F., Li, B. V., Loch-Temzelides, T., Lovejoy, T., Nowak, K., Roehrdanz, P. R., & Vale, M. M. (2020). Ecology and economics for pandemic prevention. Science, 369(6502), 379–381.

    Article  Google Scholar 

  • Fafchamps, M., & Gubert, F. (2007). Risk sharing and network formation. The American Economic Review, 97(2), 75–79.

    Article  Google Scholar 

  • Fang, H., Wang, L., & Yang, Y. (2020). Human mobility restrictions and the spread of the novel coronavirus (2019-nCoV) in China. Journal of Public Economics, 191, 104272.

    Article  Google Scholar 

  • Geweke, J. (1992). Evaluating the accuracy of sampling-based approaches to the calculations of posterior moments. Bayesian Statistics, 4, 641–649.

    Google Scholar 

  • Goenka, A., Liu, L., & Nguyen, M. H. (2021). SIR economic epidemiological models with disease induced mortality. Journal of Mathematical Economics, 93, 102476.

    Article  Google Scholar 

  • Goldsmith-Pinkham, P., & Imbens, G. W. (2013). Social networks and the identification of peer effects. Journal of Business and Economic Statistics, 31(3), 253–264.

    Article  Google Scholar 

  • Graham, B. S. (2016). Homophily and transitivity in dynamic network formation (No. w22186). National Bureau of Economic Research.

  • Guimarães, L. (2021). Antibody tests: They are more important than we thought. Journal of Mathematical Economics, 93, 102485.

    Article  Google Scholar 

  • Han, X., Hsieh, C. S., & Ko, S. I. (2021). Spatial modeling approach for dynamic network formation and interactions. Journal of Business and Economic Statistics, 39(1), 120–135.

    Article  Google Scholar 

  • Hollingsworth, T. D., Ferguson, N. M., & Anderson, R. M. (2006). Will travel restrictions control the international spread of pandemic influenza? Nature Medicine, 12(5), 497–499.

    Article  Google Scholar 

  • Hsieh, C. S., König, M. D., & Liu, X. (2019). A structural model for the coevolution of networks and behavior. Review of Economics and Statistics, 104(2), 1–41.

    Google Scholar 

  • Hsieh, C. S., & Lee, L. F. (2016). A social interactions model with endogenous friendship formation and selectivity. Journal of Applied Econometrics, 31(2), 301–319.

    Article  Google Scholar 

  • Hsieh, C. S., & Lin, X. (2021). Social interactions and social preferences in social networks. Journal of Applied Econometrics, 36(2), 165–189.

    Article  Google Scholar 

  • Jackson, M. O., Rogers, B. W., & Zenou, Y. (2017). The economic consequences of social-network structure. Journal of Economic Literature, 55(1), 49–95.

    Article  Google Scholar 

  • Jha, P., Deshmukh, Y., Tumbe, C., Suraweera, W., Bhowmick, A., Sharma, S.,...,Brown, P. (2022). COVID mortality in India: National survey data and health facility deaths. Science. https://doi.org/10.1126/science.abm5154.

  • Kermack, W. O., & McKendrick, A. G. (1927). A contribution to the mathematical theory of epidemics. Proceedings of the Royal Society of London: Series A Containing Papers of a Mathematical and Physical Character, 115(772), 700–721.

    Google Scholar 

  • Konstantinoudis, G., Cameletti, M., Gómez-Rubio, V., Gómez, I. L., Pirani, M., Baio, G.,...,Blangiardo, M. (2022). Regional excess mortality during the 2020 COVID-19 pandemic in five European countries. Nature Communications, 13(1), 1–11.

  • Kung, S., Doppen, M., Black, M., Hills, T., & Kearns, N. (2021). Reduced mortality in New Zealand during the COVID-19 pandemic. The Lancet, 397(10268), 25.

    Article  Google Scholar 

  • Lee, L. F., Liu, X., Patacchini, E., & Zenou, Y. (2021). Who is the key player? A network analysis of juvenile delinquency. Journal of Business and Economic Statistics, 39(3), 849–857.

    Article  Google Scholar 

  • Li, J., Wang, L., Guo, S., Xie, N., Yao, L., Cao, Y.,...,Sun, D. (2020). The data set for patient information based algorithm to predict mortality cause by COVID-19. Data in Brief, 30, 105619.

  • Muniz-Rodriguez, K., Chowell, G., Cheung, C. H., Jia, D., Lai, P. Y., Lee, Y., & Fung, I. C. H. (2020). Doubling time of the COVID-19 epidemic by province, China. Emerging Infectious Diseases, 26(8), 1912.

    Article  Google Scholar 

  • Oster, E. (2005). Sexually transmitted infections, sexual behavior, and the HIV/AIDS epidemic. The Quarterly Journal of Economics, 120(2), 467–515.

    Google Scholar 

  • Patacchini, E., Rainone, E., & Zenou, Y. (2017). Heterogeneous peer effects in education. Journal of Economic Behavior and Organization, 134, 190–227.

    Article  Google Scholar 

  • Qiu, Y., Chen, X., & Shi, W. (2020). Impacts of social and economic factors on the transmission of coronavirus disease 2019 (COVID-19) in China. Journal of Population Economics, 33(4), 1127–1172.

    Article  Google Scholar 

  • Sherwani, R. A. K., Shakeel, H., Saleem, M., Awan, W. B., Aslam, M., & Farooq, M. (2021). A new neutrosophic sign test: An application to COVID-19 data. PLoS ONE, 16(8), e0255671.

    Article  Google Scholar 

  • Smarandache, F., Khalid, H. E., & Essa, A. K. (2018). Neutrosophic logic: The revolutionary logic in science and philosophy. In Infinite study.

  • Tatem, A. J., & Smith, D. L. (2010). International population movements and regional Plasmodium falciparum malaria elimination strategies. Proceedings of the National Academy of Sciences of USA, 107(27), 12222–12227.

    Article  Google Scholar 

  • Wu, J. T., Leung, K., & Leung, G. M. (2020). Nowcasting and forecasting the potential domestic and international spread of the 2019-nCoV outbreak originating in Wuhan, China: A modelling study. The Lancet, 395(10225), 689–697.

    Article  Google Scholar 

  • Zenou, Y. (2016). Key players. The Oxford Handbook of the Economics of Networks, 4, 244–274.

    Google Scholar 

Download references

Acknowledgements

This paper has benefited from helpful comments of Chih-Sheng Hsieh and Xiaoyi Han. Financial support from National Natural Science Foundation of China (71974076) and Guangdong Natural Science Foundation of China (2019A1515011923) is gratefully acknowledged.

Funding

This study was funded by National Natural Science Foundation of China (71974076), Guangdong Natural Science Foundation of China (2019A1515011923) and the Fundamental Research Funds for the Central Universities (19JNKY07).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cui Zhang.

Ethics declarations

Conflict of interest

The authors Cui Zhang and Dandan Zhang of the paper entitled ‘‘Spatial interactions and the spread of COVID-19: A network perspective’’, declare that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: Bayesian Estimation

Appendix: Bayesian Estimation

Let \(\theta ={\left({\Psi }^{{\prime}},{\beta }{^{\prime}},{\beta }_{3},{\beta }_{4},{\sigma }_{\mu }^{2}\right)}^{{\prime}}\) with \(\Psi ={\left(\lambda ,\rho \right)}^{{\prime}}\), \(\beta ={\left({\beta }_{1}{^{\prime}},{\beta }_{2}{^{\prime}}\right)}{^{\prime}}\) and \(\Gamma ={\left( {\Phi }{^{\prime}},{\sigma }_{\varepsilon }^{2} \right)}{^{\prime}}\) with \(\Phi ={\left({\alpha }_{0}, {\alpha }_{x}{^{\prime}},{\alpha }_{y},{\alpha }_{d},{\alpha }_{g},{\alpha }_{f},{\alpha }_{v} \right)}{^{\prime}}\). Following Han et al. (2021), our prior distributions are

$$\Phi \,\backsim\, {N}_{6+k}\left({\Phi }_{0},{P}_{0}\right),$$
$$\beta \,\backsim\, {N}_{2k}\left({\beta }_{0},{B}_{0}\right),$$
$${\beta }_{3}\,\backsim\, N\left({\beta }_{30},{B}_{30}\right),$$
$${\beta }_{4}\,\backsim\, N\left({\beta }_{40},{B}_{40}\right),$$
$${\sigma }_{\mu }^{2}\,\backsim\, \mathrm{\rm I}G\left(\frac{{a}_{\mu }}{2},\frac{{b}_{\mu }}{2}\right),$$
$${\sigma }_{\varepsilon }^{2}\,\backsim\, \mathrm{\rm I}G\left(\frac{{a}_{\varepsilon }}{2},\frac{{b}_{\varepsilon }}{2}\right),$$
$$\lambda \,\backsim\, U\left(-\frac{1}{{\Delta }_{G}},\frac{1}{{\Delta }_{G}}\right),$$
$$\rho \,\backsim\, U\left(-1+\left|\lambda \right|{\Delta }_{G},1-\left|\lambda \right|{\Delta }_{G}\right),$$

where \({\Delta }_{G}={max}_{t=\mathrm{1,2},\ldots ,T}{\parallel {G}_{t}\parallel }_{\infty }\) due to the stability conditions: \({S}_{t}\left(\lambda \right)={I}_{J}-\lambda {G}_{t}\) is invertible and \({\parallel {S}_{t}^{-1}\left(\lambda \right)\rho {I}_{J}\parallel }_{\infty }<1\), \({N}_{l}\left(\cdot \right)\), \(IG\left(\cdot \right)\) and \(U\left(\cdot \right)\) are respectively the multivariate normal, inverse gamma and uniform distribution, and \({\beta }_{4}\) is the coefficient of time fixed effects \({\alpha }_{t}\). We choose the hyperparameters in the prior distributions as follows: \({\Phi }_{0}=0\), \({P}_{0}=100{I}_{6+k}\), \({\beta }_{0}=0\), \({B}_{0}=100{I}_{2k}\), \({\beta }_{30}=0\), \({B}_{30}=100\), \({\beta }_{40}=0\), \({B}_{40}=100\), \({a}_{\mu }=3\), \({b}_{\mu }=2\), \({a}_{\varepsilon }=3\), \({b}_{\varepsilon }=2\).

The latent variables \({V}_{t}\) are modeled by a Markov process with the initial distribution

$$\mathrm{\rm P}\left({V}_{1}|{\sigma }_{{v}_{0}}^{2}\right)=\prod_{i=1}^{J}\phi \left({v}_{i1}|0,{\sigma }_{{v}_{0}}^{2}\right)$$

and the transition equation

$$\mathrm{\rm P}\left({V}_{t}|{{V}_{t-1},\sigma }_{v}^{2}\right)=\prod_{i=1}^{J}\phi \left({v}_{it}|{v}_{i,t-1},{\sigma }_{v}^{2}\right)$$

for \(t=2, 3,\ldots ,T\), where \(\phi \) denotes the normal density and \({\sigma }_{{v}_{0}}^{2}\) and \({\sigma }_{v}^{2}\) are normalized to be 1.

The MCMC sampling procedure combines the Gibbs sampling and the Metropolis–Hastings (M–H) algorithm. It consists of the following steps:

Step 1: Sample \({v}_{i1}\) from \(\mathrm{\rm P}\left({v}_{i1}|{Y}_{1},{G}_{1},{v}_{-i,1},{v}_{i2},\theta ,\Gamma \right)\propto \phi \left({v}_{i1}\right)\times \phi \left({v}_{i2}|{v}_{i1}\right)\times \mathrm{\rm P}\left({Y}_{1},{G}_{1}|{V}_{1},\theta ,\Gamma \right)\) for \(i=\mathrm{1,2},\ldots ,J\), using the M–H algorithm.

Step 2: Sample \({v}_{it}\) from \(\mathrm{\rm P}\left({v}_{it}|{Y}_{t},{G}_{t},{{v}_{i,t+1},v}_{-i,t},{v}_{i,t-1},\theta ,\Gamma \right)\propto \phi \left({v}_{i,t+1}|{v}_{it}\right)\times \phi \left({v}_{it}|{v}_{i,t-1}\right)\times \mathrm{\rm P}\left({Y}_{t},{G}_{t}|{V}_{t},\theta ,\Gamma \right)\) for \(i=1, 2,\ldots ,J\) and \(t=2,\ldots ,T-1\), using the M–H algorithm.

Step 3: Sample \({v}_{iT}\) from \(\mathrm{\rm P}\left({v}_{iT}|{Y}_{T},{G}_{T},{{v}_{-i,T},v}_{i,T-1},\theta ,\Gamma \right)\propto \phi \left({v}_{iT}|{v}_{i,T-1}\right)\times \mathrm{\rm P}\left({Y}_{T},{G}_{T}|{V}_{T},\theta ,\Gamma \right)\) for \(i=\mathrm{1,2},\ldots ,J\), using the M–H algorithm.

Step 4: Sample \(\Psi \) from

\(\mathrm{\rm P}\left(\Psi |\left\{{Y}_{t}\right\},\left\{{G}_{t}\right\},\left\{{V}_{t}\right\},\beta ,{\beta }_{3},{\beta }_{4},{\sigma }_{\mu }^{2}\right)\propto u\left(\Psi \right)\times \mathrm{\rm P}\left(\left\{{Y}_{t}\right\}|\left\{{G}_{t}\right\},\left\{{V}_{t}\right\},\Psi ,\beta ,{\beta }_{3}{,{\beta }_{4},\sigma }_{\mu }^{2}\right)\) using the M–H algorithm, where \(u\left(\cdot \right)\) is the uniform density function.

Step 5: Sample \({\beta }_{3}\) from \(\mathrm{\rm P}\left({\beta }_{3}|\left\{{Y}_{t}\right\},\left\{{G}_{t}\right\},\left\{{V}_{t}\right\},\Psi ,\beta ,{\beta }_{4},{\sigma }_{\mu }^{2}\right)\propto \phi \left({T}_{{\beta }_{3}},{\Sigma }_{{\beta }_{3}}\right)\), where \({\Sigma }_{{\beta }_{3}}={\left({\mathrm{B}}_{30}^{-1}+{\sigma }_{\mu }^{-2}\sum_{t=1}^{T}{V}_{t}^{{\prime}}{V}_{t}\right)}^{-1}\) and \({T}_{{\beta }_{3}}={\Sigma }_{{\beta }_{3}}\left({\mathrm{B}}_{30}^{-1}{\upbeta }_{30}+{\sigma }_{\mu }^{-2}\sum_{t=1}^{T}{V}_{t}^{{\prime}}\left({S}_{t}\left(\lambda \right){Y}_{t}-\rho {Y}_{t-1}-{{\varvec{X}}}_{t}\beta -{d}_{t}{\beta }_{4}\right)\right)\) with \({{\varvec{X}}}_{t}=\left({X}_{t},{\overline{G} }_{t}{X}_{t}\right)\) and \({\overline{G} }_{t}\) denotes the row-normalized \({G}_{t}\). We restrict \({\beta }_{3}>0\) to pin down the signs of \({V}_{t}\)’s.

Step 6: Sample \(\beta \) from \(\mathrm{\rm P}\left(\beta |\left\{{Y}_{t}\right\},\left\{{G}_{t}\right\},\left\{{V}_{t}\right\},\Psi ,{\beta }_{3},{\beta }_{4},{\sigma }_{\mu }^{2}\right)\propto {\phi }_{2k}\left({T}_{\beta },{\Sigma }_{\beta }\right)\), where \({\phi }_{2k}\left(\cdot \right)\) is the multivariate \(2k\)-dimensional normal density function, \({\Sigma }_{\beta }={\left({B}_{0}^{-1}+{\sigma }_{\mu }^{-2}\sum_{t=1}^{T}{{\varvec{X}}}_{t}^{{\prime}}{{\varvec{X}}}_{t}\right)}^{-1}\) and \({T}_{\beta }={\Sigma }_{\beta }\left({B}_{0}^{-1}{\beta }_{0}+{\sigma }_{\mu }^{-2}\sum_{t=1}^{T}{{\varvec{X}}}_{t}^{{\prime}}\left({S}_{t}\left(\lambda \right){Y}_{t}-\rho {Y}_{t-1}-{V}_{t}{\beta }_{3}-{d}_{t}{\beta }_{4}\right)\right)\).

Step 7: Sample \({\sigma }_{\mu }^{2}\) from \(\mathrm{\rm P}\left({\sigma }_{\mu }^{2}|\left\{{Y}_{t}\right\},\left\{{G}_{t}\right\},\left\{{V}_{t}\right\},\Psi ,{\beta }_{3},{\beta }_{4},\beta \right)\propto \iota \gamma \left(\frac{{a}_{\mu }^{new}}{2},\frac{{b}_{\mu }^{new}}{2}\right)\), where \(\iota \gamma \left(\cdot \right)\) is the inverse gamma density function, \({a}_{\mu }^{new}={a}_{\mu }+T\cdot J\) and \({b}_{\mu }^{new}={b}_{\mu }+\sum_{t=1}^{T}{\mu }_{t}^{{\prime}}{\mu }_{t}\).

Step 8: Sample \({\beta }_{4}\) from \(\mathrm{\rm P}\left({\beta }_{4}|\left\{{Y}_{t}\right\},\left\{{G}_{t}\right\},\left\{{V}_{t}\right\},\Psi ,{\beta ,\beta }_{3},{\sigma }_{\mu }^{2}\right)\propto \phi \left({T}_{{\beta }_{4}},{\Sigma }_{{\beta }_{4}}\right)\), where \({\Sigma }_{{\beta }_{4}}={\left({B}_{40}^{-1}+{\sigma }_{\mu }^{-2}\sum_{t=1}^{T}{d}_{t}^{{\prime}}{d}_{t}\right)}^{-1}\) and \({T}_{{\beta }_{4}}={\Sigma }_{{\beta }_{4}}\left({B}_{40}^{-1}{\beta }_{40}+{\sigma }_{\mu }^{-2}\sum_{t=1}^{T}{d}_{t}^{{\prime}}\left({S}_{t}\left(\lambda \right){Y}_{t}-\rho {Y}_{t-1}-{{\varvec{X}}}_{t}\beta -{V}_{t}{\beta }_{3}\right)\right)\).

Step 9: Sample \(\Phi \) from \(\mathrm{\rm P}\left(\Phi |\left\{{G}_{t}\right\},\left\{{V}_{t}\right\},{\sigma }_{\varepsilon }^{2}\right)\propto { \phi }_{6+k}\left({T}_{\Phi },{\Sigma }_{\Phi }\right)\), where \({\Sigma }_{\Phi }={\left({\mathrm{\rm P}}_{0}^{-1}+{\sigma }_{\varepsilon }^{-2}\sum_{t=1}^{T}{\chi }_{t}^{{\prime}}{\chi }_{t}\right)}^{-1}\), \({T}_{\Phi }={\Sigma }_{\Phi }\left({\mathrm{\rm P}}_{0}^{-1}{\Phi }_{0}+{\sigma }_{\varepsilon }^{-2}\sum_{t=1}^{T}{\chi }_{t}^{{\prime}}{\tilde{G }}_{t}\right)\) with

$${\chi }_{t}=\left(\begin{array}{c}1,\left({X}_{1,t}-{X}_{2,t}\right),\left({Y}_{1,t-1}-{Y}_{2,t-1}\right),{D}_{12,\mathrm{t}},{g}_{12,\mathrm{t}-1},{F}_{12,t-1},\left|{v}_{1,t}-{v}_{2,t}\right|\\ \begin{array}{c}1,\left({X}_{1,t}-{X}_{3,t}\right),\left({Y}_{1,t-1}-{Y}_{3,t-1}\right),{D}_{13,\mathrm{t}},{g}_{13,\mathrm{t}-1},{F}_{13,t-1},\left|{v}_{1,t}-{v}_{3,t}\right|\\ \begin{array}{c}\vdots \\ \begin{array}{c}1,\left({X}_{i,t}-{X}_{j,t}\right),\left({Y}_{i,t-1}-{Y}_{j,t-1}\right),{D}_{ij,\mathrm{t}},{g}_{ij,\mathrm{t}-1},{F}_{ij,t-1},\left|{v}_{i,t}-{v}_{j,t}\right|\\ \begin{array}{c}\vdots \\ 1,\left({X}_{J,t}-{X}_{J-1,t}\right),\left({Y}_{J,t-1}-{Y}_{J-1,t-1}\right),{D}_{J,J-1,\mathrm{t}},{g}_{J,J-1,\mathrm{t}-1},{F}_{J,J-1,t-1},\left|{v}_{J,t}-{v}_{J-1,t}\right|\end{array}\end{array}\end{array}\end{array}\end{array}\right)$$

for \(i,j=\mathrm{1,2},\ldots ,J\),\(i\ne j\), and let \({G}_{it\backslash i}=\left({{g}_{i1,t},g}_{i2,t},\ldots {{g}_{i,i-1,t},g}_{i,i+1,t},\ldots ,{g}_{iJ,t}\right)\) for \(i=\mathrm{1,2},\ldots ,J\), \({\tilde{G }}_{t}={\left({G}_{1t\backslash 1},{G}_{2t\backslash 2},\ldots {,G}_{Jt\backslash J}\right)}^{{\prime}}\).

Step 10: Sample \({\sigma }_{\varepsilon }^{2}\) from \(\mathrm{\rm P}\left({\sigma }_{\varepsilon }^{2}|\left\{{G}_{t}\right\},\left\{{V}_{t}\right\},\Phi \right)\propto \iota \gamma \left(\frac{{a}_{\varepsilon }^{new}}{2},\frac{{b}_{\varepsilon }^{new}}{2}\right)\), where \({a}_{\varepsilon }^{new}={a}_{\varepsilon }+T\cdot J\) and \({b}_{\varepsilon }^{new}={b}_{\varepsilon }+\sum_{t=1}^{T}{\varepsilon }_{t}^{{\prime}}{\varepsilon }_{t}\).

We collect the draws from iterating the above steps and compute the posterior mean and the posterior standard deviation as our estimation results.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, C., Zhang, D. Spatial Interactions and the Spread of COVID-19: A Network Perspective. Comput Econ 62, 383–405 (2023). https://doi.org/10.1007/s10614-022-10278-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10614-022-10278-y

Keywords

Navigation