Skip to main content

Advertisement

Log in

Non-cooperative Mode, Cost-Sharing Mode, or Cooperative Mode: Which is the Optimal Mode for Desertification Control?

  • Published:
Computational Economics Aims and scope Submit manuscript

Abstract

The problem of desertification is becoming increasingly severe, affecting the production and livelihood of people; this has led to keen interest in the issue, especially in developing countries. Based on the dynamic changes in desertification control scale and enterprise goodwill, we studied the game problem of desertification control between the government and enterprise under the non-cooperative, cost-sharing, and cooperative modes by constructing a differential game model. We put forward a revenue distribution mechanism with time consistency under the cooperation mode. The results show that government and enterprise control of desertification under the cooperative mode has the best effect, followed by the cost-sharing mode. The non-cooperative mode should be avoided. Lowering tax rates by the government is not always a good method of encouraging enterprises to increase desertification control investment. The tax rate should be adjusted according to the choice of governance mode as it can more effectively increase the investment level of enterprises in combating desertification. The optimal pricing of desert characteristic products is not affected by the governance mode.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Availability of Data and Material

Not applicable.

Code Availability

Not applicable.

References

  • Akhtar-Schuster, M., Thomas, R. J., Stringer, L. C., Chasek, P., & Seely, M. (2011). Improving the enabling environment to combat land degradation: Institutional, financial, legal and science-policy challenges and solutions. Land Degradation and Development, 22(2), 299–312

    Article  Google Scholar 

  • Bao, Y., Cheng, L., Bao, Y., & Yang, L. (2017). Desertification: China provides a solution to a global challenge. Frontiers of Agricultural Science and Engineering, 4(4), 402–413

    Article  Google Scholar 

  • Bertinelli, L., Camacho, C., & Zou, B. (2014). Carbon capture and storage and transboundary pollution: A differential game approach. European Journal of Operational Research, 237(2), 721–728

    Article  Google Scholar 

  • Briassoulis, H. (2011). Governing desertification in Mediterranean Europe: The challenge of environmental policy integration in multi-level governance contexts. Land Degradation and Development, 22(3), 313–325

    Article  Google Scholar 

  • Chang, S., Sethi, S. P., & Wang, X. (2018). Optimal abatement and emission permit trading policies in a dynamic transboundary pollution game. Dynamic Games and Applications, 8(3), 542–572

    Article  Google Scholar 

  • Chutani, A., & Sethi, S. P. (2012). Optimal advertising and pricing in a dynamic durable goods supply chain. Journal of Optimization Theory and Applications, 154(2), 615–643

    Article  Google Scholar 

  • D’Odorico, P., Bhattachan, A., Davis, K. F., Ravi, S., & Runyan, C. W. (2013). Global desertification: Drivers and feedbacks. Advances in Water Resources, 51, 326–344

    Article  Google Scholar 

  • Darkoh, M. B. K. (1998). The nature, causes and consequences of desertification in the drylands of Africa. Land Degradation and Development, 9(1), 1–20

    Article  Google Scholar 

  • Dockner, E. J., & Long, N. V. (1993). International pollution control: Cooperative versus noncooperative strategies. Journal of Environmental Economics and Management, 25(1), 13–29

    Article  Google Scholar 

  • EI Ouardighi, F. (2014). Supply quality management with optimal wholesale price and revenue sharing contracts: A two-stage game approach. International Journal of Production Economics, 156, 260–268

    Article  Google Scholar 

  • EI Ouardighi, F., & Kogan, K. (2013). Dynamic conformance and design quality in a supply chain: An assessment of contracts’ coordinating power. Annals of Operations Research, 211(1), 137–166

    Article  Google Scholar 

  • EI Ouardighi, F., Sim, J., & Kim, B. (2021). Pollution accumulation and abatement policies in two supply chains under vertical and horizontal competition and strategy types. International Journal of Management Science. https://doi.org/10.1016/j.omega.2019.102108

    Article  Google Scholar 

  • Fanokoa, S. P., Telahigue, I., & Zaccour, G. (2011). Buying cooperation in an asymmetric environmental differential game. Journal of Economic Dynamics and Control, 35(6), 935–946

    Article  Google Scholar 

  • Jiang, K., You, D., Li, Z., & Shi, S. (2019). A differential game approach to dynamic optimal control strategies for watershed pollution across regional boundaries under eco-compensation criterion. Ecological Indicators, 105, 229–241

    Article  Google Scholar 

  • Jørgensen, S., & Zaccour, G. (2001). Time consistent side payments in a dynamic game of downstream pollution. Journal of Economic Dynamics and Control, 25(12), 1973–1987

    Article  Google Scholar 

  • Leeuwen, C. C. E. V., Cammeraat, E. L. H., Vente, J. D., & Boix-Fayos, C. (2019). The evolution of soil conservation policies targeting land abandonment and soil erosion in Spain: A review. Land Use Policy, 83, 174–186

    Article  Google Scholar 

  • Li, D., Xu, D., Wang, Z., Ding, X., & Song, A. (2018). Ecological compensation for desertification control: A review. Journal of Geographical Sciences, 28(3), 367–384

    Article  Google Scholar 

  • Li, S. (2014). A differential game of transboundary industrial pollution with emission permits trading. Journal of Optimization Theory and Applications, 163(2), 642–659

    Article  Google Scholar 

  • Li, Y., Cui, J., Zhang, T., Okuro, T., & Drake, S. (2009). Effectiveness of sand-fixing measures on desert land restoration in Kerqin Sandy Land, northern China. Ecological Engineering, 35(1), 118–127

    Article  Google Scholar 

  • Liu, G., Zhang, J., & Tang, W. (2015). Strategic transfer pricing in a marketing–operations interface with quality level and advertising dependent goodwill. International Journal of Management Science, 56, 1–15

    Google Scholar 

  • Liu, N., Zhou, L., & Hauger, J. S. (2013). How sustainable is government-sponsored desertification rehabilitation in China? Behavior of households to changes in environmental policies. PLoS ONE, 8(10), 1–8

    Article  Google Scholar 

  • Lyu, Y., Shi, P., Han, G., Liu, L., Guo, L., Hu, X., & Zhang, G. (2020). Desertification control practices in China. Sustainability, 1, 211. https://doi.org/10.3390/su12083258

    Article  Google Scholar 

  • Mcdonald, S., & Poyago-Theotoky, J. (2017). Green technology and optimal emissions taxation. Journal of Public Economic Theory, 19(2), 362–376

    Article  Google Scholar 

  • Moghaddam, M. H. R., Sedighi, A., Fasihi, S., & Firozjaei, M. K. (2018). Effect of environmental policies in combating aeolian desertification over Sejzy Plain of Iran. Aeolian Research, 35, 19–28

    Article  Google Scholar 

  • Osorio, R. J., Barden, C. J., & Ciampitti, I. A. (2019). GIS approach to estimate windbreak crop yield effects in Kansas-Nebraska. Agroforestry Systems, 93(4), 1567–1576

    Article  Google Scholar 

  • Petrosjan, L. A., & Villiger, R. (2001). Time-consistent agreeable solutions in an environmental pollution game. IFAC Modeling and Control of Economic, 34(20), 59–64

    Google Scholar 

  • Qu, Y., & Zhang, Z. (2020). The design and application of non-pressure infiltrating irrigation in desertification control. Sustainability. https://doi.org/10.3390/su12041547

    Article  Google Scholar 

  • Reynolds, J. F., Smith, D. M. S., Lambin, E. F., & Turner, B. L., II. (2007). Global desertification: Building a science for dryland development. Science, 316, 847–851

    Article  Google Scholar 

  • Scuderi, L., Weissmann, G., Kindilien, P., & Yang, X. (2015). Evaluating the potential of database technology for documenting environmental change in China’s deserts. CATENA, 134, 87–97

    Article  Google Scholar 

  • Sivakumar, M. V. K., Gommes, R., & Baier, W. (2000). Agrometeorology and sustainable agriculture. Agricultural and Forest Meteorology, 103(1), 11–26

    Article  Google Scholar 

  • Verón, S. R., Paruelo, J. M., & Oesterheld, M. (2006). Assessing desertification. Journal of Arid Environments, 66(4), 751–763

    Article  Google Scholar 

  • Wang, F., Pan, X., Wang, D., Shen, C., & Lu, Q. (2013). Combating desertification in China: Past, present and future. Land Use Policy, 31, 311–313

    Article  Google Scholar 

  • Wang, T., Xue, X., Zhou, L., & Guo, J. (2015a). Combating aeolian desertification in northern China. Land Degradation and Development, 26(2), 118–132

    Article  Google Scholar 

  • Wang, X., Li, X., Xiao, H., & Pan, Y. (2006). Evolutionary characteristics of the artificially revegetated shrub ecosystem in the Tengger Desert, northern China. Ecological Research, 21(3), 415–424

    Article  Google Scholar 

  • Wang, X., Ma, W., Lang, L., & Hua, T. (2015b). Controls on desertification during the early twenty-first century in the water tower region of China. Regional Environmental Change, 15(4), 735–746

    Article  Google Scholar 

  • Wei, X., Zhou, L., Yang, G., Wang, Y., & Chen, Y. (2020). Assessing the effects of desertification control projects from the farmers’ perspective: A case study of Yanchi county, northern China. International Journal of Environmental Research and Public Health, 17(3), 983–998

    Article  Google Scholar 

  • Xu, D., & Ding, X. (2018). Assessing the impact of desertification dynamics on regional ecosystem service value in North China from 1981 to 2010. Ecosystem Services, 30, 172–180

    Article  Google Scholar 

  • Xu, S., & Han, C. (2019). Study on basin ecological compensation mechanism based on differential game. Chinese Journal of Management Science, 27(8), 199–207 in Chinese.

    Google Scholar 

  • Yeung, D. W. K. (2007). Dynamically consistent cooperative solution in a differential game of transboundary industrial pollution. Journal of Optimization Theory and Applications, 134(1), 143–160

    Article  Google Scholar 

  • Yi, Y., Wei, Z., & Fu, C. (2020). A differential game of transboundary pollution control and ecological compensation in a river basin. Complexity. https://doi.org/10.1155/2020/6750805

    Article  Google Scholar 

  • Yi, Y., Xu, R., & Zhang, S. (2017). A cooperative stochastic differential game of transboundary industrial pollution between two asymmetric nations. Mathematical Problems in Engineering, 2017, 1–10

    Google Scholar 

  • You, Y., Lei, J., Wang, Y., & Xu, X. (2019). Comparative study of the implementation of environmental policies to combat desertification in Kuwait and the Hotan Region of China. Arabian Journal of Geosciences, 12(24), 1–9

    Article  Google Scholar 

  • Zang, Y., Gong, W., Xie, H., Liu, B., & Chen, H. (2015). Chemical sand stabilization: A review of material, mechanism, and problems. Environmental Technology Reviews, 4(1), 119–132

    Article  Google Scholar 

Download references

Funding

No funding was received to assist with the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

Writing original draft, review and editing, Jiayi Sun; Methodology and supervision, Deqing Tan. All authors have approved the manuscript.

Corresponding author

Correspondence to Jiayi Sun.

Ethics declarations

Conflict of interest

All authors certify that they have no affiliations with or involvement in any organization or entity with any financial interest or non-financial interest in the subject matter or materials discussed in this manuscript.

Ethical Approval

The research content of this paper does not involve humans and animals or life science, so we think this paper may not need ethical approval.

Informed Consent

The research content of this paper does not involve human participants, animals or life science, so we think this paper may not need informed consent.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix 1 for Proposition 1

The first-order conditions of \(u_{gN}^{*}\), \(u_{sN}^{*}\), and \(p_{N}^{*}\) are as follows:

$$ u_{gN}^{*} (t) = \frac{{V^{\prime}_{gN} (S)e}}{{c_{g} }} $$
(26)
$$ u_{sN}^{*} (t) = \frac{{V^{\prime}_{sN} (S)f}}{{c_{s} }} $$
(27)
$$ p_{N}^{*} (t) = \frac{a}{{2b_{1} }} $$
(28)

Substituting Eqs. (26), (27), and (28) into Eqs. (7a) and (7b) of HJB to obtain the following.

$$ \begin{aligned} rV_{gN} (S,G) & = [B - \sigma V^{\prime}_{gN} (S) + {\kern 1pt} bV^{\prime}_{gN} (G)]S(t) + \left[ {T_{1} \pi \omega + \frac{{T_{2} \alpha a^{2} }}{{4b_{1} }} - {\kern 1pt} \delta V^{\prime}_{gN} (G){\kern 1pt} } \right]G(t) \\ & \quad + \,T_{1} \pi Q_{0} - BS_{\kappa } + \frac{{(V^{\prime}_{gN} (S))^{2} e^{2} }}{{2c_{g} }} + \frac{{f^{2} V^{\prime}_{gN} (S)V^{\prime}_{sN} (S){\kern 1pt} }}{{c_{s} }} \\ \end{aligned} $$
(29)
$$ \begin{aligned} rV_{sN} (S,G) & = [b{\kern 1pt} V^{\prime}_{sN} (G) - \sigma V^{\prime}_{sN} (S){\kern 1pt} ]S(t) + (1 - T_{1} )\pi Q_{0} + \frac{{(V^{\prime}_{sN} (S){\kern 1pt} )^{2} f^{2} }}{{2c_{s} }} \\ & \quad + \,\left[ {(1 - T_{1} )\pi \omega + \frac{{(1 - T_{2} )\alpha a^{2} }}{{4b_{1} }} - {\kern 1pt} \delta {\kern 1pt} V^{\prime}_{sN} (G)} \right]G{\kern 1pt} (t){\kern 1pt} {\kern 1pt} + \frac{{e^{2} V^{\prime}_{gN} (S){\kern 1pt} V^{\prime}_{sN} (S)}}{{c_{g} }} \\ \end{aligned} $$
(30)

From the structure of Eqs. (29) and (30), we can analyze that the expressions of \(V_{gN} (S,G)\) and \(V_{sN} (S,G)\) are linear functions, such that

$$ V_{gN} (S,G) = m_{1} S + m_{2} G + m_{3} ,\quad V_{sN} (S,G) = n_{1} S + n_{2} G + n_{3} $$
(31)
$$ {\text{then we can get}}:\quad V^{\prime}_{gN} (S) = m_{1} ,\quad V^{\prime}_{gN} (G) = m_{2} ,\quad V^{\prime}_{sN} (S) = n_{1} ,\quad V^{\prime}_{sN} (G) = n_{2} $$
(32)

where \(m_{1}\), \(m_{2}\), \(m_{3}\), \(n_{1}\), \(n_{2}\), and \(n_{3}\) are all constants. Substituting Eqs. (31) and (32) into Eqs. (29) and (30), according to the undetermined coefficient method, we obtain the following.

$$ \left\{ {\begin{array}{*{20}l} {m_{1} { = }\frac{{4b_{1} (r + \delta )B + 4b_{1} T_{1} \pi \omega b + T_{2} \alpha a^{2} b}}{{4b_{1} (r + \delta )(r + \sigma )}},m_{2} { = }\frac{{4b_{1} T_{1} \pi \omega + T_{2} \alpha a^{2} }}{{4b_{1} (r + \delta )}}} \hfill \\ {m_{3} = \frac{{T_{1} \pi Q_{0} - BS_{\kappa } }}{r} + \frac{{e^{2} [4b_{1} B(r + \delta ) + 4b_{1} T_{1} \pi \omega b + T_{2} \alpha a^{2} b]^{2} }}{{32b_{1}^{2} c_{g} r(r + \delta )^{2} (r + \sigma )^{2} }}} \hfill \\ { + \frac{{f^{2} [4b_{1} B(r + \delta ) + 4b_{1} T_{1} \pi \omega b + T_{2} \alpha a^{2} b][4b_{1} (1 - T_{1} )\pi \omega b + (1 - T_{2} )\alpha a^{2} b]}}{{16b_{1}^{2} c_{s} r(r + \delta )^{2} (r + \sigma )^{2} }}} \hfill \\ \end{array} } \right. $$
(33)
$$ \left\{ {\begin{array}{*{20}l} {n_{1} { = }\frac{{4b_{1} (1 - T_{1} )\pi \omega b + (1 - T_{2} )\alpha a^{2} b}}{{4b_{1} (r + \delta )(r + \sigma )}},n_{2} { = }\frac{{4b_{1} (1 - T_{1} )\pi \omega + (1 - T_{2} )\alpha a^{2} }}{{4b_{1} (r + \delta )}}} \hfill \\ {n_{3} = \frac{{(1 - T_{1} )\pi Q_{0} }}{r} + \frac{{f^{2} [4b_{1} (1 - T_{1} )\pi \omega b + (1 - T_{2} )\alpha a^{2} b]^{2} }}{{32b_{1}^{2} c_{s} r(r + \delta )^{2} (r + \sigma )^{2} }}} \hfill \\ { + \frac{{e^{2} [4b_{1} B(r + \delta ) + 4b_{1} T_{1} \pi \omega b + T_{2} \alpha a^{2} b][4b_{1} (1 - T_{1} )\pi \omega b + (1 - T_{2} )\alpha a^{2} b]}}{{16b_{1}^{2} c_{g} r(r + \delta )^{2} (r + \sigma )^{2} }}} \hfill \\ \end{array} } \right. $$
(34)

By substituting Eqs. (33) and (34) into Eqs. (26), (27), and (28), we can obtain the expressions of \(u_{gN}^{*} (t)\), \(u_{sN}^{*} (t)\), and \(p_{N}^{*} (t)\), and substituting Eqs. (33) and (34) into Eqs. (31), we can obtain \(V_{gN}^{*} (S,G)\) and \(V_{sN}^{*} (S,G)\). Then, Proposition 1 can be obtained.

Appendix 2 for Corollary 1

Taking the first derivatives of \(u_{gN}^{*} (t)\), \(u_{sN}^{*} (t)\), and \(p_{N}^{*} (t)\) with respect to \(T_{1}\) and \(T_{2}\), we can obtain: \(\frac{{\partial u_{gN}^{*} (t)}}{{\partial T_{1} }} = \frac{e\pi \omega b}{{(r + \delta )(r + \sigma )c_{g} }} > 0\), \(\frac{{\partial u_{gN}^{*} (t)}}{{\partial T_{2} }} = \frac{{e\alpha a^{2} b}}{{4b_{1} (r + \delta )(r + \sigma )c_{g} }} > 0\)

$$ \frac{{\partial u_{sN}^{*} (t)}}{{\partial T_{1} }} = - \frac{f\pi \omega b}{{(r + \delta )(r + \sigma )c_{s} }} < 0,\quad \frac{{\partial u_{sN}^{*} (t)}}{{\partial T_{2} }} = - \frac{{f\alpha a^{2} b}}{{4b_{1} (r + \delta )(r + \sigma )c_{s} }} < 0 $$
$$ \frac{{\partial p_{N}^{*} (t)}}{{\partial T_{1} }} = 0,\quad \frac{{\partial p_{N}^{*} (t)}}{{\partial T_{2} }} = 0 $$
$$ \left| {\frac{{\partial u_{sN}^{*} (t)}}{{\partial T_{1} }}} \right| - \left| {\frac{{\partial u_{sN}^{*} (t)}}{{\partial T_{2} }}} \right| = \frac{f\pi \omega b}{{(r + \delta )(r + \sigma )c_{s} }} - \frac{{f\alpha a^{2} b}}{{4b_{1} (r + \delta )(r + \sigma )c_{s} }} $$

Then we can know that when \(\pi > \frac{\alpha }{2\omega }p_{N}^{*} (t)\), \(\left| {\frac{{\partial u_{sN}^{*} (t)}}{{\partial T_{1} }}} \right| - \left| {\frac{{\partial u_{sN}^{*} (t)}}{{\partial T_{2} }}} \right| > 0\), and when \(\pi < \frac{\alpha }{2\omega }p_{N}^{*} (t)\), \(\left| {\frac{{\partial u_{sN}^{*} (t)}}{{\partial T_{1} }}} \right| - \left| {\frac{{\partial u_{sN}^{*} (t)}}{{\partial T_{2} }}} \right| < 0\).

Taking the first derivatives of \(u_{gN}^{*} (t)\), \(u_{sN}^{*} (t)\), and \(p_{N}^{*} (t)\) concerning \(r\), we have:

$$ \frac{{\partial u_{gN}^{*} (t)}}{\partial r} = - \frac{{e\{ 4[\pi \omega T_{1} (\delta + \sigma + 2r)b + B(r + \delta )^{2} ]b_{1} + \alpha a^{2} bT_{2} (\delta + \sigma + 2r)\} }}{{4b_{1} (r + \delta )^{2} (r + \sigma )^{2} c_{g} }} < 0 $$
$$ \frac{{\partial u_{sN}^{*} (t)}}{\partial r} = - \frac{{[(1 - T_{2} )\alpha a^{2} + 4b_{1} \pi \omega (1 - T_{1} )](\delta + \sigma + 2r)bf}}{{4b_{1} (r + \delta )^{2} (r + \sigma )^{2} c_{s} }} < 0,\quad \frac{{\partial p_{N}^{*} (t)}}{\partial r} = 0 $$

Then, we can obtain the conclusions of Corollary 1.

Appendix 3 for Proposition 2

Taking the first derivatives of Eq. (14) with respect to \(u_{gS} (t)\) and \(\theta (t)\), we can obtain the optimal first-order condition of the government as follows:

$$ u_{gS}^{*} (t) = \frac{{V^{\prime}_{gS} (S)e}}{{c_{g} }} $$
(35)
$$ \theta^{ * } (t) = \frac{{2V^{\prime}_{gS} (S) - V^{\prime}_{sS} (S)}}{{2V^{\prime}_{gS} (S) + V^{\prime}_{sS} (S)}} $$
(36)

Substituting Eqs. (13a), (13b), (35), and (36) into Eqs. (12) and (14) to obtain the following.

$$ \begin{aligned} rV_{gS} (S,G) & = [B - \sigma V^{\prime}_{gS} (S) + {\kern 1pt} bV^{\prime}_{gS} (G)]S(t) + \left[ {T_{1} \pi \omega + \frac{{T_{2} \alpha a^{2} }}{{4b_{1} }} - {\kern 1pt} \delta V^{\prime}_{gS} (G)} \right]G(t) \\ & \quad + T_{1} \pi Q_{0} - BS_{\kappa } + \frac{{(V^{\prime}_{gS} (S))^{2} e^{2} }}{{2c_{g} }} + \frac{{f^{2} (2V^{\prime}_{gS} (S) + V^{\prime}_{sS} (S){\kern 1pt} )^{2} }}{{8c_{s} }} \\ \end{aligned} $$
(37)
$$ \begin{aligned} rV_{sS} (S,G) & = [b{\kern 1pt} V^{\prime}_{sS} (G) - \sigma V^{\prime}_{sS} (S){\kern 1pt} ]S(t) + \frac{{V^{\prime}_{sS} (S)(2V^{\prime}_{gS} (S) + V^{\prime}_{sS} (S){\kern 1pt} )f^{2} }}{{4c_{s} }} \\ & \quad + (1 - T_{1} )\pi Q_{0} + \left[ {(1 - T_{1} )\pi \omega + \frac{{(1 - T_{2} )\alpha a^{2} }}{{4b_{1} }} - {\kern 1pt} \delta {\kern 1pt} V^{\prime}_{sS} (G)} \right]G{\kern 1pt} (t){\kern 1pt} {\kern 1pt} + \frac{{e^{2} V^{\prime}_{gS} (S){\kern 1pt} V^{\prime}_{sS} (S)}}{{c_{g} }} \\ \end{aligned} $$
(38)

From the structure of Eqs. (37) and (38), we can analyze that the expressions of \(V_{gS} (S,G)\) and \(V_{sS} (S,G)\) are linear functions, such that

$$ V_{gS} (S,G) = g_{1} S + g_{2} G + g_{3} ,\quad V_{sS} (S,G) = h_{1} S + h_{2} G + h_{3} $$
(39)
$$ {\text{then we can get}}:V^{\prime}_{gS} (S) = g_{1} ,\quad V^{\prime}_{gS} (G) = g_{2} ,\quad V^{\prime}_{sS} (S) = h_{1} ,\quad V^{\prime}_{sS} (G) = h_{2} $$
(40)

where \(g_{1}\), \(g_{2}\), \(g_{3}\), \(h_{1}\), \(h_{2}\), and \(h_{3}\) are all constants. Then, substituting Eqs. (39) and (40) into Eqs. (37) and (38), following the undetermined coefficient method, we obtain the following.

$$ \left\{ {\begin{array}{*{20}l} {g_{1} { = }\frac{{4b_{1} (r + \delta )B + 4b_{1} T_{1} \pi \omega b + T_{2} \alpha a^{2} b}}{{4b_{1} (r + \delta )(r + \sigma )}},g_{2} { = }\frac{{4b_{1} T_{1} \pi \omega + T_{2} \alpha a^{2} }}{{4b_{1} (r + \delta )}}} \hfill \\ {g_{3} = \frac{{T_{1} \pi Q_{0} - BS_{\kappa } }}{r} + \frac{{e^{2} [4b_{1} B(r + \delta ) + 4b_{1} T_{1} \pi \omega b + T_{2} \alpha a^{2} b]^{2} }}{{32b_{1}^{2} c_{g} r(r + \delta )^{2} (r + \sigma )^{2} }}} \hfill \\ { + \frac{{f^{2} [8b_{1} B(r + \delta ) + 4b_{1} (1 + T_{1} )\pi \omega b + (1 + T_{2} )\alpha a^{2} b]}}{{128b_{1}^{2} c_{s} r(r + \delta )^{2} (r + \sigma )^{2} }}} \hfill \\ \end{array} } \right. $$
(41)
$$ \left\{ \begin{gathered} h_{1} = \frac{{4b_{1} (1 - T_{1} )\pi \omega b + (1 - T_{2} )\alpha a^{2} b}}{{4b_{1} (r + \delta )(r + \sigma )}},h_{2} = \frac{{4b_{1} (1 - T_{1} )\pi \omega + (1 - T_{2} )\alpha a^{2} }}{{4b_{1} (r + \delta )}} \hfill \\ h_{3} = \frac{{f^{2} [4b_{1} (1 - T_{1} )\pi \omega b + (1 - T_{2} )\alpha a^{2} b][8b_{1} B(r + \delta ) + 4b_{1} (1 + T_{1} )\pi \omega b + (1 + T_{2} )\alpha a^{2} b]}}{{64b_{1}^{2} c_{s} r(r + \delta )^{2} (r + \sigma )^{2} }} \hfill \\ + \frac{{e^{2} [4b_{1} B(r + \delta ) + 4b_{1} T_{1} \pi \omega b + T_{2} \alpha a^{2} b][4b_{1} (1 - T_{1} )\pi \omega b + (1 - T_{2} )\alpha a^{2} b]}}{{16b_{1}^{2} c_{g} r(r + \delta )^{2} (r + \sigma )^{2} }} + \frac{{(1 - T_{1} )\pi Q_{0} }}{r} \hfill \\ \end{gathered} \right. $$
(42)

By substituting Eqs. (41) and (42) into Eqs. (13a), (13b), (35), and (36), we can obtain the expressions for \(u_{sS}^{*} (t)\), \(p_{S}^{*} (t)\), \(u_{gS}^{*} (t)\), and \(\theta^{*} (t)\), and substituting Eqs. (41) and (42) into Eq. (39), we can obtain \(V_{gS}^{*} (S,G)\) and \(V_{sS}^{*} (S,G)\). Then, Proposition 2 can be obtained.

Appendix 4 for Proposition 3

Taking the first derivatives of Eq. (15b) with respect to \(T_{1}\) and \(T_{2}\), we obtain:

$$ \frac{{\partial \theta^{ * } (t)}}{{\partial T_{1} }} = \frac{{2b_{1} \{ 4b_{1} [\pi \omega b + (r + \delta )B] + \alpha a^{2} b\} \pi \omega b}}{{\{ 8[\pi \omega (1 + T_{1} )b + 2(r + \delta )B]b_{1} + \alpha a^{2} b(1 + T_{2} )\}^{2} }} > 0 $$
$$ \frac{{\partial \theta^{ * } (t)}}{{\partial T_{2} }} = \frac{{\{ 4b_{1} [\pi \omega b + (r + \delta )B] + \alpha a^{2} b\} \alpha a^{2} b}}{{2\{ 8[\pi \omega (1 + T_{1} )b + 2(r + \delta )B]b_{1} + \alpha a^{2} b(1 + T_{2} )\}^{2} }} > 0 $$

When the government does not undertake the enterprise’s governance cost, the impact of the tax rate \(T_{1}\) and \(T_{2}\) on the enterprise’s investment level is

$$ \frac{{\partial u_{sN}^{*} (t)}}{{\partial T_{1} }} = - \frac{f\pi \omega b}{{(r + \delta )(r + \sigma )c_{s} }} < 0,\quad \frac{{\partial u_{sN}^{*} (t)}}{{\partial T_{2} }} = - \frac{{f\alpha a^{2} b}}{{4b_{1} (r + \delta )(r + \sigma )c_{s} }} < 0 $$

When the government undertake part of the enterprise’s governance cost, the impact of the government’s undertake proportion on the enterprise’s investment level is

$$ \frac{{\partial u_{sS}^{*} }}{\partial \theta } = \frac{{f\pi \omega bT_{1} }}{{(r + \delta )(r + \sigma )c_{s} (1 - \theta )^{2} }} + \frac{{f\alpha a^{2} bT_{2} }}{{4b_{1} (r + \delta )(r + \sigma )c_{s} (1 - \theta )^{2} }} + \frac{fB}{{(r + \sigma )c_{s} (1 - \theta )^{2} }} > 0 $$

Because we know \(0 \le T_{1} \le 1\) and \(0 \le \theta \le 1\), obviously \(\left| {\frac{{\partial u_{sN}^{*} (t)}}{{\partial T_{1} }}} \right| < \left| {\frac{{\partial u_{sS}^{*} }}{\partial \theta }} \right|\) and \(\left| {\frac{{\partial u_{sN}^{*} (t)}}{{\partial T_{2} }}} \right| < \left| {\frac{{\partial u_{sS}^{*} }}{\partial \theta }} \right|\). Then, Proposition 3 can be obtained.

Appendix 5 for Corollary 3

Taking the first derivatives of Eqs. (15a), (15c), and (15d) with respect to \(T_{1}\) and \(T_{2}\), we can obtain:\(\frac{{\partial u_{gS}^{*} (t)}}{{\partial T_{1} }} = \frac{e\pi \omega b}{{(r + \delta )(r + \sigma )c_{g} }} > 0\), \(\frac{{\partial u_{gS}^{*} (t)}}{{\partial T_{2} }} = \frac{{e\alpha a^{2} b}}{{4b_{1} (r + \delta )(r + \sigma )c_{g} }} > 0\)

$$ \frac{{\partial u_{sS}^{*} (t)}}{{\partial T_{1} }} = \frac{f\pi \omega b}{{2(r + \delta )(r + \sigma )c_{s} }} > 0,\quad \frac{{\partial u_{sS}^{*} (t)}}{{\partial T_{2} }} = \frac{{f\alpha a^{2} b}}{{8b_{1} (r + \delta )(r + \sigma )c_{s} }} > 0 $$
$$ \frac{{\partial p_{S}^{*} (t)}}{{\partial T_{1} }} = 0,\quad \frac{{\partial p_{S}^{*} (t)}}{{\partial T_{2} }} = 0 $$

Based on the above discussion, Corollary 3 can be obtained.

Appendix 6 for Proposition 4

The optimal first-order conditions of \(u_{gC}^{*}\), \(u_{sC}^{*}\), and \(p_{C}^{*}\) are as follows:

$$ u_{gC}^{*} (t) = \frac{{V^{\prime}_{C} (S)e}}{{c_{g} }} $$
(43)
$$ u_{sC}^{*} (t) = \frac{{V^{\prime}_{C} (S)f}}{{c_{s} }} $$
(44)
$$ p_{C}^{*} (t) = \frac{a}{{2b_{1} }} $$
(45)

Substituting Eqs. (43), (44), and (45) into Eq. (19) of HJB, we obtain:

$$ \begin{aligned} rV_{C} (S,G) & = [B - \sigma V^{\prime}_{C} (S) + {\kern 1pt} bV^{\prime}_{C} (G)]S(t) + \left[ {\pi \omega + \frac{{\alpha a^{2} }}{{4b_{1} }} - {\kern 1pt} \delta V^{\prime}_{C} (G)} \right]G(t) \\ & \quad + \pi Q_{0} - BS_{\kappa } + \frac{{(V^{\prime}_{C} (S))^{2} e^{2} }}{{2c_{g} }} + \frac{{f^{2} (V^{\prime}_{C} (S){\kern 1pt} )^{2} }}{{2c_{s} }} \\ \end{aligned} $$
(46)

From the structure of Eq. (46), we can analyze that the expression of \(V_{C} (S,G)\) is a linear function, such that

$$ V_{C} (S,G) = l_{1} S + l_{2} G + l_{3} $$
(47)
$$ {\text{then we can get:}}V^{\prime}_{C} (S) = l_{1} ,\quad V^{\prime}_{C} (G) = l_{2} $$
(48)

where \(l_{1}\), \(l_{2}\), and \(l_{3}\) are constants. Substituting Eqs. (47) and (48) into Eq. (46), according to the undetermined coefficient method, we obtain:

$$ \left\{ \begin{gathered} l_{1} = \frac{{4b_{1} B(r + \delta ) + 4b_{1} \pi \omega b + \alpha a^{2} b}}{{4b_{1} (r + \delta )(r + \sigma )}},l_{2} = \frac{{4b_{1} \pi \omega + \alpha a^{2} }}{{4b_{1} (r + \delta )}} \hfill \\ l_{3} = \frac{{\pi Q_{0} - BS_{\kappa } }}{r} + \frac{{[4b_{1} B(r + \delta ) + b_{1} \pi \omega b + \alpha a^{2} b]^{2} }}{{32b_{1}^{2} r(r + \delta )^{2} (r + \sigma )^{2} }}\left( {\frac{{e^{2} }}{{c_{g} }} + \frac{{f^{2} }}{{c_{s} }}} \right) \hfill \\ \end{gathered} \right. $$
(49)

Substituting Eq. (49) into Eqs.(43), (44), (45), and (47), we can obtain the expressions for \(u_{gC}^{ * } (t)\), \(u_{sC}^{ * } (t)\), \(p_{C}^{ * } (t)\), and \(V_{C}^{ * } (S,G)\). Then, Proposition 4 can be obtained.

Appendix 7 for Proposition 5

According to (8) in Proposition 1, (15) in Proposition 2, and (20) in Proposition 4, we can obtain: \(p_{S}^{ * } (t) - p_{N}^{ * } (t) = 0\),\(p_{C}^{ * } (t) - p_{S}^{ * } (t) = 0\)

$$ u_{gN}^{ * } (t) - u_{gS}^{ * } (t) = 0,\quad u_{gC}^{ * } (t) - u_{gS}^{ * } (t) = \frac{{e[4b_{1} \pi \omega b(1 - T_{1} ) + \alpha a^{2} b(1 - T_{2} )]}}{{4b_{1} (r + \delta )(r + \sigma )c_{g} }} > 0 $$
$$ u_{sS}^{ * } (t) - u_{sN}^{ * } (t) = \frac{{f[4b_{1} \pi \omega b(3T_{1} - 1) + \alpha a^{2} b(3T_{2} - 1) + 8b_{1} (r + \delta )B]}}{{8b_{1} (r + \delta )(r + \sigma )c_{s} }} $$

Based on the condition \(\theta^{*} (t) > 0\), we know that as long as the cost-sharing mode is established, \(u_{sS}^{ * } (t) - u_{sN}^{ * } (t) > 0\).

$$ u_{sC}^{ * } (t) - u_{sS}^{ * } (t) = \frac{{f[b_{1} \pi \omega b(1 - T_{1} ) + \alpha a^{2} b(1 - T_{2} )]}}{{8b_{1} c_{s} (r + \delta )(r + \sigma )}} > 0 $$

We can get the conclusion:\(p_{N}^{ * } (t) = p_{S}^{ * } (t) = p_{C}^{ * } (t)\),\(u_{gN}^{ * } = u_{gS}^{ * } < u_{gC}^{ * }\), \(u_{sN}^{ * } < u_{sS}^{ * } < u_{sC}^{ * }\).

Similarly, according to Eq. (9) in Proposition 1, (16) in Proposition 2, and (21) in Proposition 4, we have the following results.

$$ V_{gS}^{*} - V_{gN}^{*} = \frac{{f^{2} \{ 4b_{1} [2B(r + \delta ) + \pi \omega b(3T_{1} - 1)] + \alpha a^{2} b(3T_{2} - 1)\}^{2} }}{{64b_{1}^{2} c_{s} r(r + \delta )^{2} (r + \sigma )^{2} }} > 0 $$
$$ V_{sS}^{*} - V_{sN}^{*} = \frac{{4b_{1} \{ [2B(r + \delta ) + b\pi \omega (3T_{1} - 1)] + \alpha a^{2} b\} f^{2} b[4b_{1} \pi \omega (1 - T_{1} ) + \alpha a^{2} (1 - T_{2} )]}}{{64b_{1}^{2} c_{s} r(r + \delta )^{2} (r + \sigma )^{2} }} > 0 $$
$$ \begin{aligned} & & V_{C}^{*} - (V_{gN}^{*} + V_{sN}^{*} ) \\ & = \frac{{e^{2} b^{2} [4b_{1} \pi \omega (T_{1} - 1) + \alpha a^{2} (T_{2} - 1)]^{2} }}{{32b_{1}^{2} c_{g} r(r + \delta )^{2} (r + \sigma )^{2} }} + \frac{{f^{2} [4b_{1} B(r + \delta ) + \alpha a^{2} bT_{2} + 4b_{1} \pi \omega T_{1} b]^{2} }}{{32b_{1}^{2} c_{s} r(r + \delta )^{2} (r + \sigma )^{2} }} > 0 \\ \end{aligned} $$
$$ \begin{aligned} & V_{C}^{*} - (V_{gS}^{*} + V_{sS}^{*} ) \\ & = \frac{{e^{2} b^{2} [4b_{1} \pi \omega (T_{1} - 1) + \alpha a^{2} (T_{2} - 1)]^{2} }}{{32b_{1}^{2} c_{g} r(r + \delta )^{2} (r + \sigma )^{2} }} + \frac{{f^{2} b^{2} [\alpha a^{2} (T_{2} - 1) + 4b_{1} \pi \omega (T_{1} - 1)]^{2} }}{{128b_{1}^{2} c_{s} r(r + \delta )^{2} (r + \sigma )^{2} }} > 0 \\ \end{aligned} $$

We can then conclude \(V_{gS}^{*} > V_{gN}^{*}\), \(V_{sS}^{*} > V_{sN}^{*}\), \(V_{C}^{*} > V_{gN}^{*} + V_{sN}^{*}\), and \(V_{C}^{*} > V_{gS}^{*} + V_{sS}^{*}\).

Based on the above analysis Proposition 5 can be obtained.

Appendix 8 for Proposition 6

According to Eqs. (10), (17), and (22), we have:

$$ \begin{aligned} S_{S} (t) - S_{N} (t) & = (S_{S}^{SS} - S_{N}^{SS} )(1 - e^{ - \sigma t} ) \\ & = \frac{{f^{2} [8B(r + \delta )b_{1} + 4b_{1} \pi \omega b(3T_{1} - 1) + \alpha a^{2} b(3T_{2} - 1)](1 - e^{ - \sigma t} )}}{{8b_{1} c_{s} (r + \delta )(r + \sigma )\sigma }} > 0 \\ \end{aligned} $$
$$ \begin{aligned} S_{C} (t) - S_{S} (t) & = (D_{C}^{{SS}} - D_{S}^{{SS}} )(1 - e^{{ - \sigma t}} ) \\ & = \frac{{[4b_{1} \pi \omega b(1 - T_{1} ) + \alpha a^{2} b(1 - T_{2} )](2e^{2} c_{s} + f^{2} c_{g} )(1 - e^{{ - \sigma t}} )}}{{8b_{1} c_{s} c_{g} (r + \delta )(r + \sigma )\sigma }} > 0 \\ \end{aligned} $$
$$ \begin{aligned} G_{S} (t) - G_{N} (t) & = (G_{S}^{SS} - G_{N}^{SS} )(1 - e^{ - \delta t} ) + \frac{b}{\delta - \sigma }(S_{S}^{SS} - S_{N}^{S} )(e^{ - \delta t} - e^{ - \sigma t} ) \\ {\kern 1pt} & = b(S_{S}^{SS} - S_{N}^{S} )\left( {\frac{{e^{ - \delta t} }}{\delta - \sigma } - \frac{{e^{ - \delta t} }}{\delta } - \frac{{e^{ - \sigma t} }}{\delta - \sigma } + \frac{1}{\delta }} \right) \\ \end{aligned} $$

It is impossible to determine the sign of \(G_{S} (t) - G_{N} (t)\) directly; we suppose \(F(t) = G_{S} (t) - G_{N} (t)\), then we can get \(F^{\prime}(t) = \frac{{b\sigma (S_{S}^{SS} - S_{N}^{SS} )}}{\delta - \sigma }(e^{ - \sigma t} - e^{ - \delta t} )\), \(F^{\prime}(t) > 0\) as a constant. It can be seen that if \(F(0) = 0\), then \(F(t) = G_{S} (t) - G_{N} (t) > 0\). In the same way, we can conclude \(G_{C} (t) - G_{S} (t) > 0\). From the above analysis, we can obtain Proposition 6.

Appendix 9 for Proposition 7

Substituting \(u_{gN}^{ * }\) and \(u_{sN}^{ * }\) in Proposition 1 and \(u_{gC}^{ * }\) and \(u_{sC}^{ * }\) in Proposition 4 into \(V_{gN}\), \(V_{sN}\), \(W_{gC}\), and \(W_{sC}\), we obtain the following expressions.

\(V_{gN} = \int_{0}^{\infty } {e^{ - rt} \left\{ {T_{1} \pi Q_{0} - BS_{0} - \frac{{e^{2} (4b_{1} (r + \delta )B + 4b_{1} T_{1} \pi \omega b + T_{2} \alpha a^{2} b)^{2} }}{{32b_{1}^{2} (r + \delta )^{2} (r + \sigma )^{2} c_{g} }}} \right.} + \left. {\frac{{4b_{1} T_{1} \pi \omega + T_{2} a^{2} \alpha }}{{4b_{1} }}G_{N} (t) + BS_{N} (t)} \right\}dt\)\(V_{sN} = \int_{0}^{\infty } {e^{ - rt} \left\{ {(1 - T_{1} )\pi Q_{0} - \frac{{f^{2} (4b_{1} (1 - T_{1} )\pi \omega b + (1 - T_{2} )\alpha a^{2} b)^{2} }}{{32b_{1}^{2} (r + \delta )^{2} (r + \sigma )^{2} c_{s} }}} \right.} + \left. {\frac{{4b_{1} (1 - T_{1} )\pi \omega + (1 - T_{2} )a^{2} \alpha }}{{4b_{1} }}G_{N} (t)} \right\}dt\)\(W_{gC} = \int_{0}^{\infty } {e^{ - rt} \left\{ {T_{1} \pi Q_{0} - BS_{0} - \frac{{e^{2} (4b_{1} (r + \delta )B + 4b_{1} \pi \omega b + \alpha a^{2} b)^{2} }}{{32b_{1}^{2} (r + \delta )^{2} (r + \sigma )^{2} c_{g} }}} \right.} \, + \left. {\frac{{4b_{1} T_{1} \pi \omega + T_{2} a^{2} \alpha }}{{4b_{1} }}G_{C} (t) + BS_{C} (t)} \right\}dt\)\(W_{sC} = \int_{0}^{\infty } {e^{ - rt} \left\{ {(1 - T_{1} )\pi Q_{0} - \frac{{f^{2} (4b_{1} (r + \delta )B + 4b_{1} \pi \omega b + \alpha a^{2} b)^{2} }}{{32b_{1}^{2} (r + \delta )^{2} (r + \sigma )^{2} c_{s} }}} \right.} \, + \left. {\frac{{4b_{1} (1 - T_{1} )\pi \omega + (1 - T_{2} )a^{2} \alpha }}{{4b_{1} }}G_{C} (t)} \right\}dt\) According to (23), we can get \(W_{g}^{NBS} (S_{C} (t),G_{C} (t))\), \(W_{s}^{NBS} (S_{C} (t),G_{C} (t))\) as follows.

$$ \begin{aligned} W_{g}^{NBS} (S_{C} (t),G_{C} (t)) & = \int_{0}^{\infty } {e^{ - rt} \left\{ {T_{1} \pi Q_{0} - \frac{{B^{2} (2c_{s} e^{2} + c_{g} f^{2} )}}{{4(r + \sigma )^{2} c_{g} c_{s} }}} \right.} + \frac{{B(S_{C} (t) - S_{N} (t) - 2S_{0} )}}{2} \\ & \quad + \,\frac{{\alpha a^{2} b}}{{64b_{1}^{2} (r + \delta )^{2} (r + \sigma )^{2} c_{g} c_{s} }}\left\{ {\alpha a^{2} b[c_{g} f^{2} (T_{2} - 2)T_{2} - c_{s} e^{2} (1 + T_{2}^{2} )]} \right. \\& \left. {\quad - \,8b_{1} (r + \delta )B(c_{s} e^{2} + c_{g} f^{2} ) - 8b_{1} \pi \omega b[c_{s} e^{2} (1 + T_{1} T_{2} ) - c_{g} f^{2} (T_{1} T_{2} - T_{1} - T_{2} )]} \right\} \\ & \quad + \,\frac{\pi \omega b}{{4(r + \delta )^{2} (r + \sigma )^{2} c_{g} c_{s} }}\left\{ {\pi \omega b[c_{g} f^{2} (T_{1} - 2)T_{1} - c_{s} e^{2} (1 + T_{1}^{2} )]} \right. \\ & \quad - \,\left. {2B(r + \delta )(c_{s} e^{2} (1 + T_{1} ) - c_{g} f^{2} )} \right\}\left. { + \frac{{(4b_{1} \pi \omega + \alpha a^{2} )[G_{C} (t) + G_{N} (t)(2T_{1} - 1)]}}{{8b_{1} }}} \right\}dt \\ \end{aligned} $$
(50)
$$ \begin{aligned} W_{s}^{NBS} (S_{C} (t),G_{C} (t)) & = \int_{0}^{\infty } {e^{ - rt} \left\{ {(1 - T_{1} )\pi Q_{0} + \frac{{B(S_{C} (t) - S_{N} (t))}}{2} - \frac{{f^{2} B^{2} c_{g} }}{{4(r + \sigma )^{2} c_{g} c_{s} }}} \right.} \\ & \quad + \frac{{\alpha a^{2} b}}{{64b_{1}^{2} (r + \delta )^{2} (r + \sigma )^{2} c_{g} c_{s} }}\left\{ {8b_{1} \pi \omega b[c_{s} e^{2} (T_{1} T_{2} - 1) - c_{g} f^{2} (2 - T_{1} - T_{2} + T_{1} T_{2} )]} \right. \\ & \quad + 8b_{1} (r + \delta )B(c_{s} e^{2} (T_{2} - 1) - c_{g} f^{2} ) + \left. {\alpha a^{2} b[c_{s} e^{2} (T_{2}^{2} - 1) - c_{g} f^{2} (T_{2}^{2} - 2T_{2} + 2)]} \right\} \\ & \quad - \frac{\pi \omega b}{{4(r + \delta )^{2} (r + \sigma )^{2} c_{g} c_{s} }}\left\{ {\pi \omega b[c_{s} e^{2} (T_{1}^{2} - 1) - c_{g} f^{2} (T_{1}^{2} - 2T_{1} + 2)]} \right. \\ & \quad + \left. {2B(r + \delta )(c_{s} e^{2} (T_{1} - 1) - c_{g} f^{2} )} \right\} + \frac{{[4b_{1} (1 - 2T_{1} )\pi \omega + (1 - 2T_{2} )\alpha a^{2} ]G_{N} (t)}}{{8b_{1} }} \\ & \quad + \left. {\frac{{(4b_{1} \pi \omega + \alpha a^{2} )G_{C} (t)}}{{8b_{1} }}} \right\}dt \\ \end{aligned} $$
(51)

The expressions of \(S_{C} (t)\), \(S_{N} (t)\), \(G_{C} (t)\), and \(G_{N} (t)\) in Eqs. (50) and (51) are as follows: \(S_{C} (t){\text{ = S}}_{C}^{SS} + (S_{C} (\tau ) - S_{C}^{SS} )e^{ - \sigma (t - \tau )}\), \(S_{N} (t){\text{ = S}}_{N}^{SS} + (S_{C} (\tau ) - S_{N}^{SS} )e^{ - \sigma (t - \tau )}\)

$$ G_{C} (t) = G_{C}^{SS} + \frac{{b(S_{C} (\tau ) - S_{C}^{SS} )}}{\delta - \sigma }e^{ - \sigma (t - \tau )} + \left[ {G_{C} (\tau ) - G_{C}^{SS} - \frac{{b(S_{C} (\tau ) - S_{C}^{SS} )}}{\delta - \sigma }} \right]e^{ - \delta (t - \tau )} $$
$$ G_{N} (t) = G_{N}^{SS} + \frac{{b(S_{C} (\tau ) - S_{N}^{SS} )}}{\delta - \sigma }e^{ - \sigma (t - \tau )} + \left[ {G_{C} (\tau ) - G_{N}^{SS} - \frac{{b(S_{C} (\tau ) - S_{N}^{SS} )}}{\delta - \sigma }} \right]e^{ - \delta (t - \tau )} $$

where \(S_{N}^{SS} = \frac{{e^{2} [4b_{1} B(r + \delta ) + 4b_{1} T_{1} \pi \omega b + T_{2} \alpha a^{2} b]}}{{4b_{1} c_{g} (r + \delta )(r + \sigma )\sigma }} + \frac{{f^{2} [4b_{1} (1 - T_{1} )\pi \omega b + (1 - T_{2} )\alpha a^{2} b]}}{{4b_{1} c_{s} (r + \delta )(r + \sigma )\sigma }}\), \(S_{C}^{SS} = \frac{{[4b_{1} (r + \delta )B + 4b_{1} \pi \omega b + \alpha a^{2} b]}}{{4b_{1} (r + \delta )(r + \sigma )\sigma }}\left( {\frac{{e^{2} }}{{c_{g} }} + \frac{{f^{2} }}{{c_{s} }}} \right)\), \(G_{N}^{SS} = \frac{b}{\delta }S_{N}^{SS}\), \(G_{C}^{SS} = \frac{b}{\delta }S_{C}^{SS}\). Because the specific expression is too long, we will not expand it here.

Substituting Eqs. (50) and (51) into Eq. (25), we obtain the revenue distribution mechanism \(\xi_{g} (t)\) and \(\xi_{s} (t)\) as follows.

\(\begin{aligned} \xi_{g} (t) & = T_{1} \pi Q_{0} - \frac{{B^{2} (2c_{s} e^{2} + c_{g} f^{2} )}}{{4(r + \sigma )^{2} c_{g} c_{s} }} + \frac{{\alpha a^{2} b}}{{64b_{1}^{2} (r + \delta )^{2} (r + \sigma )^{2} c_{g} c_{s} }}\left\{ {\alpha a^{2} b[c_{g} f^{2} (T_{2} - 2)T_{2} } \right. \\ & \quad - c_{s} e^{2} (1 + T_{2}^{2} )] - 8b_{1} (r + \delta )B(c_{s} e^{2} + c_{g} f^{2} ) - 8b_{1} \pi \omega b[c_{s} e^{2} (1 + T_{1} T_{2} ) - \left. {c_{g} f^{2} (T_{1} T_{2} - T_{1} - T_{2} )]} \right\} \\ & \quad + \frac{\pi \omega b}{{4(r + \delta )^{2} (r + \sigma )^{2} c_{g} c_{s} }}\left\{ {\pi \omega b[c_{g} f^{2} (T_{1} - 2)T_{1} } \right. - c_{s} e^{2} (1 + T_{1}^{2} )] - \left. {2B(r + \delta )(c_{s} e^{2} (1 + T_{1} ) - c_{g} f^{2} )} \right\} \\ & \quad + r\int_{0}^{\infty } {e^{ - rt} \left\{ {\frac{{B(S_{C} (t) - S_{N} (t) - 2S_{0} )}}{2} + \frac{{(4b_{1} \pi \omega + \alpha a^{2} )[G_{C} (t) + G_{N} (t)(2T_{1} - 1)]}}{{8b_{1} }}} \right\}} dt \\ \end{aligned}\) \(\begin{aligned} \xi_{s} (t) & = (1 - T_{1} )\pi Q_{0} - \frac{{f^{2} B^{2} c_{g} }}{{4(r + \sigma )^{2} c_{g} c_{s} }} + \frac{{\alpha a^{2} b}}{{64b_{1}^{2} (r + \delta )^{2} (r + \sigma )^{2} c_{g} c_{s} }}\left\{ {8b_{1} \pi \omega b[c_{s} e^{2} (T_{1} T_{2} - 1)} \right. \\ & \quad - c_{g} f^{2} (2 - T_{1} - T_{2} + T_{1} T_{2} )] + 8b_{1} (r + \delta )B(c_{s} e^{2} (T_{2} - 1) - c_{g} f^{2} ) + \alpha a^{2} b[c_{s} e^{2} (T_{2}^{2} - 1) \\ & \quad - \left. {c_{g} f^{2} (T_{2}^{2} - 2T_{2} + 2)]} \right\} - \frac{\pi \omega b}{{4(r + \delta )^{2} (r + \sigma )^{2} c_{g} c_{s} }}\left\{ {\pi \omega b[c_{s} e^{2} (T_{1}^{2} - 1) - c_{g} f^{2} (T_{1}^{2} - 2T_{1} + 2)]} \right. \\ & \quad + \left. {2B(r + \delta )(c_{s} e^{2} (T_{1} - 1) - c_{g} f^{2} )} \right\} + r\int_{0}^{\infty } {e^{ - rt} \left\{ {\frac{{B(S_{C} (t) - S_{N} (t))}}{2} + \frac{{(4b_{1} \pi \omega + \alpha a^{2} )G_{C} (t)}}{{8b_{1} }}} \right.} \\ & \quad + \left. {\frac{{[4b_{1} (1 - 2T_{1} )\pi \omega + (1 - 2T_{2} )\alpha a^{2} ]G_{N} (t)}}{{8b_{1} }}} \right\}dt \\ \end{aligned}\) Based on the above analysis, Proposition 7 can be obtained.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, J., Tan, D. Non-cooperative Mode, Cost-Sharing Mode, or Cooperative Mode: Which is the Optimal Mode for Desertification Control?. Comput Econ 61, 975–1008 (2023). https://doi.org/10.1007/s10614-021-10128-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10614-021-10128-3

Keywords

Navigation