Skip to main content
Log in

Time Series Simulation with Randomized Quasi-Monte Carlo Methods: An Application to Value at Risk and Expected Shortfall

  • Published:
Computational Economics Aims and scope Submit manuscript

Abstract

Quasi-Monte Carlo methods are designed to produce efficient estimates of simulated values but the error statistics of these estimates are difficult to compute. Randomized quasi-Monte Carlo methods have been developed to address this shortcoming. In this paper we compare quasi-Monte Carlo and randomized quasi-Monte Carlo techniques for simulating time series. We use randomized quasi-Monte Carlo to compute value-at-risk and expected shortfall measures for a stock portfolio whose returns follow a highly nonlinear Markov switching stochastic volatility model which does not admit analytical solutions for the returns distribution. Quasi-Monte Carlo methods are more accurate but do not allow the computation of reliable confidence intervals about risk measures. We find that randomized quasi-Monte Carlo methods maintain many of the advantages of quasi-Monte Carlo while also providing the ability to produce reliable confidence intervals of the simulated risk measures. However, the advantages in speed of convergence of randomized quasi-Monte Carlo diminish as the forecast horizon increases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. So et al. (1998) filter their returns data to eliminate a small negative persistence term in the mean equation (6) induced by the market crash at the end of the estimation period. For the purposes of our simulations, we treat the conditional mean returns as constant.

References

  • Boyle, P. P., Broadie, M., & Glasserman, P. (1997). Monte Carlo methods for security pricing. Journal of Economic Dynamics and Control, 21(8–9), 1267–1321.

    Article  Google Scholar 

  • Caflisch, R. E., Morokoff, W. J., & Owen, A. B. (1997). Valuation of mortgage backed securities using Brownian bridges to reduce effective dimension. Journal of Computational Finance, 1(1), 27–46.

    Article  Google Scholar 

  • Carvalho, C. M., & Lopes, H. F. (2007). Simulation-based sequential analysis of markov switching stochoastic volatility models. Computational Statistics & Data Analysis, 51, 4526–4542.

    Article  Google Scholar 

  • Chang, H. -C., Chen, C. -T., & Hsieh, C. -S. (2007). Forecasting of value at risk by using percentile of cluster method (pp. 480–486). World Scientific, Singapore, Chapter 68.

  • Chen, C. -T., & Hsieh, C. -S. (2010). Measuring of value at risk (VAR) on emerging stock markets by neural networks method. In 2010 International Symposium on Computer Communication Control and Automation (3CA) (vol. 2, pp. 137–140).

  • Cranley, R., & Patterson, T. (1976). Randomization of number theoretic methods for multiple integration. SIAM Journal on Numerical Analysis, 13(6), 904–914.

    Article  Google Scholar 

  • Fishman, V., Fitton, P., & Galperin, Y. (1997). Hybrid low-discrepancy sequences: Effective path reduction for yield curve scenario generation. Journal of Fixed Income, 7, 75–84.

    Article  Google Scholar 

  • Galanti, S., & Jung, A. (1997). Low-discrepancy sequences: Monte Carlo simulation of option prices. The Journal of Derivatives, 5(1), 63–83.

    Article  Google Scholar 

  • Gnewuch, M., Srivastav, A., & Winzen, C. (2009). Finding optimal volume subintervals with k points and calculating the star discrepancy are NP-hard problems. Journal of Complexity, 25(2), 115–127.

    Article  Google Scholar 

  • Göggelmann, K., Winker, P., Schellhorn, M., & Franz, W. (2000). Quasi-Monte Carlo methods in stochastic simulations: An application to policy simulations using a disequilibrium model of the West German economy 1960–1994. Empirical Economics, 25(2), 247–259.

    Article  Google Scholar 

  • Hickernell, F. J. (1998). What affects the accuracy of quasi-Monte Carlo quadrature? In Niederreiter, H. & Spanier, J. (eds) Monte Carlo and Quasi-Monte Carlo Methods (pp. 16–55), New York. Proceedings of a Conference held at the Claremont Graduate University, Claremont, CA, USA, June 22–26, Springer-Verlag.

  • Hickernell, F. J., & Hong, H. S. (1999). The asymptotic efficiency of randomized nets for quadrature. Mathematics of Computation, 68(226), 767–791.

    Article  Google Scholar 

  • Jin, X., & Zhang, A. X. (2006). Reclaiming Quasi-Monte Carlo efficiency in portfolio value-at-risk simulation through Fourier transform. Management Science, 52(6), 925–938.

    Article  Google Scholar 

  • Joe, S. (1990). Randomization of lattice rules for numerical multiple integration. Journal of Computational and Applied Mathematics, 31(2), 299–304.

    Article  Google Scholar 

  • Joy, C., Boyle, P. P., & Tan, K. S. (1996). Quasi-Monte Carlo methods in numerical finance. Management Science, 42(6), 926–938.

    Article  Google Scholar 

  • Lambert, J. (1985). Quasi-Monte Carlo, low discrepancy sequences, and ergodic transformations. Journal of Computational and Applied Mathematics, 12, 419–423.

    Article  Google Scholar 

  • Lemieux, C. (2009). Monte Carlo and Quasi-Monte Carlo sampling., Springer Series in Statistics Berlin: Springer.

    Google Scholar 

  • Li, J. X., & Winker, P. (2003). Time series simulation with Quasi-Monte Carlo methods. Computational Economics, 21(1–2), 23–43.

    Article  Google Scholar 

  • Loh, W.-L. (1996). A combinatorial central limit theorem for randomized orthogonal array sampling designs. The Annals of Statistics, 24(3), 1209–1224.

    Article  Google Scholar 

  • Longerstaey, J., & More, L. (1995). Introduction to risk metrics. New York: Morgan Guaranty and Trust Company.

    Google Scholar 

  • Longin, F. M. (1999). Optimal margin level in futures markets: Extreme price movements. Journal of Futures Markets, 19, 127–152.

    Article  Google Scholar 

  • Matoušek, J. (1998). On the L2-discrepancy for anchored boxes. Journal of Complexity, 14(4), 527–556.

    Article  Google Scholar 

  • Matsumoto, M., & Nishimura, T. (1998). Mersenne twister: A 623-dimensionally equidistributed uniform pseudo-random number generator. ACM Transactions on Modeling and Computer Simulation (TOMACS), 8(1), 3–30.

    Article  Google Scholar 

  • Morohosi, H., & Fushimi, M. (2002). Experimental studies on the error estimation of the numerical integration by generalized Niederreiter sequences. In Proceedings of the Fourth International Symposium, Operations Research and Its Applications (ISORA) ‘02 (pp. 46–53). New York: World Publishing.

  • Morohosi, H., Kobayashi, K., & Fushimi, M. (2000). Estimating the error of quasi-Monte Carlo integrations–experimental studies in financial problems (pp. 1–11). Kokyuroku: Research Institute for Mathematical Sciences: Kyoto University .

  • Niederreiter, H. (1992). Random number generation and quasi-Monte Carlo methods. Philadelphia: Society for Industrial and Applied Mathematics.

    Book  Google Scholar 

  • Ninomiya, S., & Tezuka, S. (1996). Toward real-time pricing of complex financial derivatives. Applied Mathematical Finance, 3(1), 1–20.

    Article  Google Scholar 

  • Ökten, G. (2009). Generalized von Neumann–Kakutani transformation and random-start scrambled Halton sequences. Journal of Complexity, 25(4), 318–331.

    Article  Google Scholar 

  • Ökten, G., & Eastman, W. (2004). Randomized quasi–Monte Carlo methods in pricing securities. Journal of Economic Dynamics and Control, 28(12), 2399–2426.

    Article  Google Scholar 

  • Ökten, G., Shah, M., & Goncharov, Y. (2012). Random and deterministic digit permutations of the Halton sequence. In Monte Carlo and Quasi-Monte Carlo methods 2010 (pp. 609–622). Berlin: Springer.

  • Ökten, G., Tuffin, B., & Burago, V. (2006). A central limit theorem and improved error bounds for a hybrid-Monte Carlo sequence with applications in computational finance. Journal of Complexity, 22(4), 435–458.

    Article  Google Scholar 

  • Owen, A. B. (1994). Randomly permuted \((t,m,s)\)-nets and \((t,s)\)-sequences. In Niederreiter, H. & Shiue, P. J. -S. (eds) Monte Carlo and Quasi-Monte Carlo methods in scientific computing Lecture Notes in Statistics, ((vol. 106, pp. 299–317). New York. Proceedings of a Conference at the University of Nevada, Las Vegas, Nevada, USA, June 23–25, 1994, Springer-Verlag.

  • Owen, A. B. (1997a). Monte Carlo variance of scrambled net quadrature. SIAM Journal on Numerical Analysis, 34(5), 1884–1910.

    Article  Google Scholar 

  • Owen, A. B. (1997b). Scrambled net variance for integrals of smooth functions. The Annals of Statistics, 25(4), 1541–1562.

    Article  Google Scholar 

  • Owen, A. B., & Tavella, D. (1997). Scrambled nets for value at risk calculations. In S. Grayling (Ed.), VaR: Understanding and applying value-at-risk. London: Risk.

    Google Scholar 

  • Papageorgiou, A., & Traub, J. F. (1996). Beating Monte Carlo. Risk, 9(6), 63–65.

    Google Scholar 

  • Paskov, S. H., & Traub, J. F. (1995). Faster valuation of financial derivatives. The Journal of Portfolio Management, 22(1), 113–123.

    Article  Google Scholar 

  • Rios, M. P., & Lopes, H. F. (2013). The extended liu and west filter: Parameter learning in markov switching stochastic volatility models. In Y. Zeng & S. Wu (Eds.), State-space models: Applications in economics and finance (pp. 23–61). New York, NY: Springer New York.

    Chapter  Google Scholar 

  • Sak, H. & Başoğlu, İ. (2015). Efficient randomized quasi-Monte Carlo methods for portfolio market risk. arXiv preprint: arXiv:1510.01593.

  • Sloan, I. H., & Woźniakowski, H. (1998). When are quasi–monte carlo algorithms efficient for high dimensional integrals? Journal of Complexity, 14(1), 1–33.

    Article  Google Scholar 

  • So, M. E. P., Lam, K., & Li, W. K. (1998). A stochastic volatility model with Markov switching. Journal of Business and Economic Statistics, 16(2), 244–253.

    Google Scholar 

  • Struckmeier, J. (1995). Fast generation of low-discrepancy sequences. Journal of Computational and Applied Mathematics, 61(1), 29–41.

    Article  Google Scholar 

  • Tsay, R. S. (1999). Extreme value analysis of financial data. Technical report, Graduate School of Business, University of Chicago.

  • Tuffin, B. (1996). On the use of low discrepancy sequences in Monte Carlo methods. Monte Carlo Methods and Applications, 2, 295–320.

    Article  Google Scholar 

  • Wang, X., & Hickernell, F. J. (2000). Randomized Halton sequences. Mathematical and Computer Modelling, 32(7), 887–899.

    Article  Google Scholar 

  • Xu, L., & Ökten, G. (2015). High-performance financial simulation using randomized quasi–Monte Carlo methods. Quantitative Finance, 15(8), 1425–1436.

    Article  Google Scholar 

  • Zhang, L., Zhang, W., Xu, W., & Shi, X. (2013). A modified least-squares simulation approach to value American barrier options. Computational Economics, 44(4), 489–506.

    Article  Google Scholar 

Download references

Acknowledgements

We thank Dr. Ahmet Göncü for his helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul M. Beaumont.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tzeng, YY., Beaumont, P.M. & Ökten, G. Time Series Simulation with Randomized Quasi-Monte Carlo Methods: An Application to Value at Risk and Expected Shortfall. Comput Econ 52, 55–77 (2018). https://doi.org/10.1007/s10614-017-9661-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10614-017-9661-0

Keywords

Navigation