Skip to main content
Log in

Trading Volume and Price Distortion: An Agent-Based Model with Heterogenous Knowledge of Fundamentals

  • Published:
Computational Economics Aims and scope Submit manuscript

Abstract

This paper investigates whether trading volume and price distortion can be explained by the investor’s bounded rationality. Assuming that agents are bounded by their information access and processing, what are the consequences on market dynamics? We expose the result of simulations in an ABM that considers the liquidity as an endogenous characteristic of the market and allows to design investors as bounded rational. In a call auction market, where two risky assets are exchanged, traders are defined as a mix between fundamentalist and trend-follower outlook. Each one differs as to behaviour, order-placement strategy, mood, knowledge, risk-aversion and investment horizon. We place agents in a context of evolving fundamental values and order placement strategy; they perceive the fundamental but they also have some heterogeneous belief perseverance; and they adapt their orders to the market depth so as to maximise their execution probability and their profit. By adding bounded rationality in their information processing, we show that (1) usual features as trend-follower outlook and heterogeneous investment horizon are important features to generate excess volatility of asset prices and market inefficiency; (2) the learning fundamental value stabilises the market price and the trading volume; (3) the order-placement strategy increases trading volume, but reduces market efficiency and stability; (4) the agent’s mood prevents illiquid market and weakly increases the market volatility as classical noise trader agents; (5) the impatience to sell of traders is always present in the market: the market sell orders are always more numerous than the market buy orders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Notes

  1. The investment horizon is rounded to the nearest integer, \(\tau ^i \in \mathbb {N}^*\).

  2. See “Appendix” for more details (“Demand Function” section).

  3. Same amount of observable orders as in Yamamoto (2011). Be aware that each real-life stock exchange has its own degree of transparency.

  4. 95% confidence interval.

  5. This stylised fact was identified by Chiarella et al.’s and Yamamoto’s models and explained by the interaction between fundamentalist and chartist analysts.

  6. In the case of perfect knowledge, we assume that traders are perfectly informed: the estimated fundamental value is equal to the true one, see Eq. (5). Thus, by assumptions the learning spread is null.

References

  • Acharyaa, V. V., & Pedersen, L. H. (2005). Asset pricing with liquidity risk. Journal of Financial Economics, 77, 375–410.

    Article  Google Scholar 

  • Amihud, Y. (2002). Illiquidity and stock returns: Illiquidity and stock returns: Cross-section and time-series effects. Journal of Financial Markets, 5, 31–56.

    Article  Google Scholar 

  • Amihud, Y., Mendelson, H., & Perdersen, L. H. (2005). Liquidity and asset prices. Foundations and trends in finance, 1(4), 269–364.

    Article  Google Scholar 

  • Arthur, W. B., Holland, J., LeBaron, B., Parlmer, R., & Tayler, P. (1997). Asset pricing under endogenous expectations in an artificial stock market. In W. B. Arthur, D. Lane, & S. N. Durlauf (Eds.), The economy as an evolving complex system. II (pp. 15–44). Reading: Addison-Wesley.

  • Bao, T., Hommes, C., Sonnemans, J., & Tuinstra, J. (2012). Individual expectations, limited rationality and aggregate outcomes. Journal of Economic Dynamics and Control, 36, 1101–1120.

    Article  Google Scholar 

  • Barber, B. M., & Odean, T. (2000). Trading is hazardous to your wealth: The common stock investment performance of individual investors. The Journal of Finance, 55(2), 773–806.

    Article  Google Scholar 

  • Barberis, N., & Thaler, R. (2003). A survey of behavioral finance. In: G. M. Constantinides, M. Harris, & R. M. Stulz (Eds.), Handbook of the economics of finance (Chap. 18, 1st ed., Vol. 1, Part 2, pp. 1053–1128). Elsevier.

  • Beja, A., & Goldman, M. B. (1980). On the dynamic behavior of prices in disequilibrium. The Journal of Finance, 35(2), 235–248.

    Article  Google Scholar 

  • Bloomfield, R., O’Hara, M., & Saar, G. (2009). How noise trading affects markets: An experimental analysis. Review of Financial Studies, 22(6), 2275–2302.

    Article  Google Scholar 

  • Brock, W., & Hommes, C. (1998). Heterogeneous beliefs and routes to chaos in a simple asset pricing model. Journal of Economic Dynamics and Control, 33(8–9), 1235–1274.

    Article  Google Scholar 

  • Camerer, C. F., & Ho, T. H. (1999). Experience-weighted attraction learning in a normal form games. Econometrica, 67, 827–874.

    Article  Google Scholar 

  • Chiarella, C. (1992). The dynamics of speculative behaviour. Annals of Operations Research, 37, 101–123.

    Article  Google Scholar 

  • Chiarella, C., & Iori, G. (2002). A simulation analysis of the microstructure of double auction markets. Quantitative Finance, 2, 346–353.

    Article  Google Scholar 

  • Chiarella, C., Dieci, R., & He, X. Z. (2007). Heterogeneous expectations and speculative behavior in a dynamic multi-asset framework. Journal of Economic Behavior and Organization, 62, 408–427.

    Article  Google Scholar 

  • Chiarella, C., Iori, G., & Perello, J. (2009). The impact of heterogeneous trading rules on the limit order book and order flows. Journal of Economic Dynamics and Control, 33, 525–537.

    Article  Google Scholar 

  • Chowdry, B., & Nanda, V. (1991). Multimarket trading and market liquidity. The Review of Financial Studies, 4(3), 483–511.

    Article  Google Scholar 

  • De Long, J. B., Shleifer, A., Summers, L. H., & Waldman, R. J. (1990). Positive feedback investment strategies and destabilizing rational speculation. Journal of Finance, 45(2), 379–395.

    Article  Google Scholar 

  • DeMiguel, V., Garlappi, L., & Uppal, R. (2009). Optimal versus naive diversification: How inefficient is the 1/n portfolio strategy? The Review of Financial Studies, 22(5), 1915–1953.

    Article  Google Scholar 

  • Domowitz, I. (1993). A taxonomy of automated trade execution systems. Journal of International Money and Finance, 12, 607–631.

    Article  Google Scholar 

  • Fama, E. F. (1970). Efficient capital markets: A review of theory and empirical work. Journal of Finance, 25(2), 383–417.

    Article  Google Scholar 

  • Fischoff, B., Slovic, P., & Lichtenstein, S. (1977). Knowing with certainty: The appropriateness of extreme confidence. Journal of Experimental Psychology: Human Perception and Performance, 3, 552–564.

    Google Scholar 

  • Foucault, T., Kadan, O., & Kandel, E. (2005). Limit order book as a market for liquidity. The Review of Financial Studies, 18(4), 1171–1217.

    Article  Google Scholar 

  • Gode, D. K., & Sunder, S. (1993). Allocative efficiency of markets with zero-intelligence traders: Market as a partial substitute for individual rationality. The Journal of Political Economy, 101, 119–137.

    Article  Google Scholar 

  • Grossman, S. J., & Miller, M. H. (1988). Liquidity and market structure. The Journal of Finance, 43(3), 617–633.

    Article  Google Scholar 

  • Handa, P., Schwartz, R. A., & Tiwari, A. (2003). Quote setting and price formation in an order drivern market. Journal of Financial Markets, 6, 461–489.

    Article  Google Scholar 

  • Harras, G., & Sornette, D. (2011). How to grow a bubble: A model of myopic adapting agents. Journal of Economic Behavior and Organization, 80, 137–154.

    Article  Google Scholar 

  • Hommes, C. (2006). Heterogeneous agent models in economics and finance. In: L. Tesfatsion, & K. L. Judd (Eds.) Handbook of computational economics (Chap. 23, 1st ed., Vol. 2, pp. 1109–1186). Elsevier.

  • Hommes, C., Huang, H., & Wang, D. (2005a). A robust rational route to randomness in a simple asset pricing model. Journal of Economic Dynamics and Control, 29, 1043–1072.

    Article  Google Scholar 

  • Hommes, C., Sonnemans, J., Tuinstra, J., & van de Velden, H. (2005b). Coordination of expectations in asset pricing experiments. Review of Financial Studies, 18(3), 955–980 http://EconPapers.repec.org/RePEc:oup:rfinst:v:18:y:2005:i:3:p:955-980.

  • Hommes, C., Boswijk, P., & Manzan, S. (2007). Behavioral heterogneity in stock prices. Journal of Economic Dynamics and Control, 31, 1938–1970.

    Article  Google Scholar 

  • Iori, G. (2002). A microsimulation of traders activity in the stock market: The role of heterogeneity, agents’ interactions and trade frictions. Journal of Economic Behavior and Organization, 49, 269–285.

    Article  Google Scholar 

  • Jacob-Leal, S. (2014). Fundamentalists, chartists and asset pricing anomalies. Quantitative Finance, 15(11), 1837–1850. doi:10.1080/14697688.2014.972434.

    Article  Google Scholar 

  • Kovaleva, P., & Iori, G. (2015). The impact of reduced pre-trade transparency regimes on market quality. Journal of Economic Dynamics and Control, 57, 145–162.

    Article  Google Scholar 

  • Kyle, A. S. (1985). Continuous auctions and insider trading. Econometrica, 53(6), 1315–1335.

    Article  Google Scholar 

  • LeBaron, B. (2006). Agent-based computational finance. In: Handbook of computational economics (Vol. 2(B), pp. 1187–1227).

  • LeBaron, B., Arthur, W. B., & Parlmer, R. (1999). Time series properties of an artificial stock market. Journal of Economic Dynamics and Control, 23, 1487–1516.

    Article  Google Scholar 

  • Lord, C. G., Ross, L., & Lepper, M. R. (1979). Biased assimilation and attitude polarization: The effects of prior theories on subsequently considered evidence. Journal of Personality and Social Psychology, 37(11), 2098–2109.

    Article  Google Scholar 

  • Lux, T. (1995). Herd behaviour, bubbles and crashes. The Economic Journal, 105(431), 881–896.

    Article  Google Scholar 

  • Lux, T., Marchesi, M., & Chen, S. H. (2001). Testing for non linear structure in an artificial financial market. Journal of Economic Behavior and Organization, 46(3), 327–342.

    Article  Google Scholar 

  • Muranaga, J., & Shimizu, T. (1999). Market microstructure and market liquidity, Vol. 11. Bank for International Settlements. http://EconPapers.repec.org/RePEc:bis:biscgc:11-03.

  • Murphy, J. J. (1999). Technical analysis of the financial markets. New York: Institute of Finance.

    Google Scholar 

  • O’Hara, M., & Easley, D. (1995). Market microstructure. In: R. Jarrow, V. Maksimovic, & W. Ziemba (Eds.), Handbooks in operations research and management science: Finance. North Holland.

  • Orléan, A. (2011). L’Empire de la valeur. Refonder l’économie. La couleur des idées (p. 352). Paris: Seuil.

  • Parlour, C. A. (1998). Price dynamics in limit order markets. The Review of Financial Studies, 11(4), 789–816.

    Article  Google Scholar 

  • Pouget, C. (2000). L’efficience informationnelle revisitée sous l’angle de l’efficience allocative. GDR: In Colloque GDR.

    Google Scholar 

  • Salle, I., & Yildizoglu, M. (2012). Efficient sampling and metamodeling for computational economic models. http://cahiersdugretha.u-bordeaux4.fr/2012/2012-18, cahier du GREThA.

  • Shiller, R. J. (2003). From efficient markets theory to behavioral finance. The Journal of Economic Perspectives, 17(1), 83–104.

    Article  Google Scholar 

  • Simon, H. A. (1982). Models of bounded rationality: Behavioral economics and business organization. Cambridge: MIT Press.

    Google Scholar 

  • Tedeschi, G., Iori, G., & Gallegati, M. (2012). Herding effects in order driven markets: The rise and fall of gurus. Journal of Economic Behavior and Organization, 81, 82–96.

    Article  Google Scholar 

  • Tversky, A., & Kahneman, D. (1974). Judgment under uncertainty: Heuritics and biases. Science, 185(4157), 1124–1131.

    Article  Google Scholar 

  • Vriend, N. J. (2006). Ace models of endogenous interactions. In: L. Tesfatsion, & K. L. Judd (Eds.), Handbook of computational economics (Chap. 21, 1st ed., Vol. 2, pp. 1047–1079). Elsevier.

  • Walter, C., & Brian, E. (2008). Critique de la valeur fondamentale. Berlin: Springer.

    Book  Google Scholar 

  • Westerhoff, F. H. (2004). Multi-asset market dynamics. Macroeconomic Dynamics, 8, 596–616.

    Google Scholar 

  • Yamamoto, R. (2011). Order aggressiveness, pre-trade transparency, and long memory in an order-driven market. Journal of Economic Dynamics and Control, 35, 1938–1963.

    Article  Google Scholar 

  • Yamamoto, R., & LeBaron, B. (2010). Order-splitting and long-memory in an order-driven market. The European Physical Journal B, 73, 51–57.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vivien Lespagnol.

Appendix

Appendix

1.1 Demand Function

Each trader has its own demand function and decides the amount of wealth she would like to invest in the risky assets. The residual wealth is invested in a bond with zero interest rate. To facilitate reading of the appendix, we drop the agent superscript i from all variables.

$$\begin{aligned} U(W,\alpha )=-\exp (-\alpha W) \end{aligned}$$
(16)

The demand function is defined as a constant absolute risk-aversion class, where \(\alpha \) is the risk aversion coefficient of the trader, and \(W_t\) the trader wealth at time t. The wealth is given by a cash amount \(C_t\) and the quantity of the risky assets \(z^j_t\) held times their spot prices \(p^j_t\).

$$\begin{aligned} W_t=z^1_t \cdot p^1_t+z^2_t \cdot p^2_t+C_t \end{aligned}$$
(17)

The wealth at time \(t+\tau \) (assuming the order is executed at a price \(p^j\) before \(t+\tau \)) is given by:

$$\begin{aligned} W_{t+\tau }= & {} z_{t+\tau }^1\cdot p^1_{t+\tau }+z_{t+\tau }^2\cdot p^2_{t+\tau }+C_{t+\tau } \end{aligned}$$
(18)
$$\begin{aligned}= & {} W_t + s^1_t\cdot p^1_t\cdot r_{t+\tau }^1+s_{t}^2\cdot p^2_t\cdot r_{t+\tau }^2 \end{aligned}$$
(19)

where \(r_{t+\tau }=p_{t+\tau }/p_t-1\) is the return from t to \(t+\tau \). As a zero order approximation, the agent’s expectations on future returns are taken to be Gaussian where future return is assumed to be \(r_{t+\tau }=p_{t+\tau }/p_t-1\simeq ln(p_{t+\tau }/p_t)\). Based on her knowledge, the trader tries to maximise at time t her forward utility (\(U_{t+\tau }\)):

$$\begin{aligned} \max _{W_{t+\tau }} \ \mathbb {E}_t[U(W_{t+\tau }, \alpha )] = \max _{W_{t+\tau }} \ \mathbb {E}_t[ -exp({-\alpha \cdot W_{t+\tau }})] \end{aligned}$$
(20)

Because the utility is exponential and the returns are assumed to be Gaussian, the utility may be expressed as:

$$\begin{aligned} \hat{U}(W_{t+\tau }, \alpha ) =- \exp \left( -\alpha \cdot \mathbb {E}_t[W_{t+\tau }] + \alpha ^2 \cdot \sigma ^2_t[W_{t+\tau }]/2 \right) \end{aligned}$$
(21)

where the risk of investment is assigned its variance. The expected wealth and the variance are:

$$\begin{aligned} \mathbb {E}_t[W_{t+\tau }]= & {} W_t + s_t^1\cdot p^1_t \mathbb {E}_t[r_1]+s^2_t.p^2_t \mathbb {E}_t[r_2] \end{aligned}$$
(22)
$$\begin{aligned} \sigma ^2_t[W_{t+\tau }]= & {} s^1_t\cdot (p_t^1)^2\cdot \sigma ^2_t[r_1]+s^2_t\cdot (p^2_t)^2\cdot \sigma ^2_t[r_2]+2\cdot s^1_t\cdot p^1_t\cdot s^2_t\cdot p^2_t\cdot \sigma _t[r_1;r_2]\nonumber \\ \end{aligned}$$
(23)

Equation (21) could be rewritten as:

$$\begin{aligned} \hat{U}_{t+\tau }= & {} \hat{U}_t \times \exp \Big (-\alpha \big [ s_t^1\cdot p^1_t\cdot \mathbb {E}_t[r_1]+ s_t^2\cdot p_t^2\cdot \mathbb {E}_t[r_2] \big ] \nonumber \\&+\frac{\alpha ^2}{2} \big [ (s_t^1)^2(p_t^1)^2\sigma ^2_t[r_1] + (s_t^2)^2(p_t^2)^2\sigma ^2_t[r_2] + 2\cdot s^1_t \cdot p^1_t\cdot s^2_t\cdot p^2_t\cdot \sigma _t[r_1;r_2] \big ] \Big )\nonumber \\ \end{aligned}$$
(24)

Differentiating the expected utility function (24) with respect to \(s_t^j\) gives:

$$\begin{aligned} {\left\{ \begin{array}{ll} \frac{d}{ds_t^1}\hat{U}_{t+\tau }= - \hat{U}_{t+\tau } \left[ \alpha \cdot p_t^1\cdot \ln \left( \frac{p_{t+\tau }^1}{p^1_t} \right) -\alpha ^2\cdot s_t^1(p^1_t)^2 \sigma ^2_t[r_1]-2\cdot s_t^2 \cdot p^1_t\cdot p^2_t\cdot \sigma _t[r_1;r_2]\right] \\ \frac{d}{ds_t^2}\hat{U}_{t+\tau }= - \hat{U}_{t+\tau } \left[ \alpha \cdot p_t^2\cdot \ln \left( \frac{p_{t+\tau }^2}{p^2_t} \right) -\alpha ^2\cdot s_t^2(p^2_t)^2 \sigma ^2_t[r_2]-2\cdot s_t^1\cdot p^1_t\cdot p^2_t\cdot \sigma _t[r_1;r_2] \right] \end{array}\right. } \end{aligned}$$
(25)

Setting the expression to zero we determine the optimal amount of stocks (\(S_t^*=\pi (p)\)) that the agent wishes to hold in her portfolio for a given price level p.

$$\begin{aligned} {\left\{ \begin{array}{ll} \pi ^{1}_t (\hat{p_1} ,\hat{p}_2)= \dfrac{\sigma ^2[r_1]. \ln \left( \dfrac{ \hat{p}_{2}}{p_2} \right) \alpha ^3 - 2.\sigma [r_1;r_2].\ln \left( \dfrac{ \hat{p}_{1}}{p_1} \right) \alpha }{p_2 \left( \sigma ^2[r_1].\sigma ^2[r_2].\alpha ^4-4.\sigma ^2[r_1;r_2] \right) } \\ \pi ^{2}_t (\hat{p_1} ,\hat{p}_2)= \dfrac{\sigma ^2[r_2]. \ln \left( \dfrac{ \hat{p}_{1}}{p_1} \right) \alpha ^3 - 2.\sigma [r_1;r_2].\ln \left( \dfrac{ \hat{p}_{2}}{p_2} \right) \alpha }{p_1 \left( \sigma ^2[r_1].\sigma ^2[r_2].\alpha ^4-4.\sigma ^2[r_1;r_2] \right) } \end{array}\right. } \end{aligned}$$
(26)

Notice that in Eq. (26), the parameters are time- and agent-dependent. If we assume the assets to be independent (\(\sigma [r_1;r_2]=0\)) and replace the variance notation \(\sigma ^2[x]\) by \(Var_x\), it corresponds to Eqs. (9) and (10).

Table 9 Comparison among perfect knowledge of the fundamental value, adaptive learning and adaptive learning with order-placement strategy in a market with fundamentalist and chartist outlook (\(\sigma ^2_f=0.6/\sigma ^2_c=1 \))
Table 10 Comparison among adaptive learning and adaptive learning with order-placement strategy in a market with fundamentalist and chartist outlook (\(\sigma ^2_f=0.6/\sigma ^2_c=10\))

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lespagnol, V., Rouchier, J. Trading Volume and Price Distortion: An Agent-Based Model with Heterogenous Knowledge of Fundamentals. Comput Econ 51, 991–1020 (2018). https://doi.org/10.1007/s10614-017-9655-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10614-017-9655-y

Keywords

JEL Classification

Navigation