Skip to main content
Log in

On the Market Selection Hypothesis in a Mean Reverting Environment

  • Published:
Computational Economics Aims and scope Submit manuscript

Abstract

We investigate the market selection hypothesis in a mean reverting environment. We consider three models varying the endowment process and agents’ beliefs and we show that with a constant relative risk aversion utility, controlling for the discount factor, agents with incorrect beliefs about the level of the endowment process cannot survive.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abel, A. (1989). Asset prices under heterogeneous beliefs: Implications for the equity premium. Working paper, Wharton School, University of Pennsylvania.

  • Alchian, A. (1950). Uncertainty evolution and economic theory. Journal of Political Economy, 58, 211–221.

    Article  Google Scholar 

  • Ang, A., & Timmermann, A. (2011). Regime changes and financial markets. NBER working paper series, nr. 17182.

  • Basak, S. (2000). A model of dynamic equilibrium asset pricing with heterogeneous beliefs and extraneous beliefs. Journal of Economic Dynamics and Control, 24, 63–95.

    Article  Google Scholar 

  • Blume, L., & Easley, D. (2006). If you’re so smart, why aren’t you rich? Belief selection in complete and incomplete markets. Econometrica, 74, 929–966.

    Article  Google Scholar 

  • Branger, N., Schlag, C., & Wu, L. (2007). Rational laymen versus over-confident experts: Who survive in the long run. Working paper.

  • Campbell, J. Y., & Kyle, A. S. (1993). Smart money, noise trading and stock price behaviour. The Review of Economic Studies, 6, 1–34.

    Article  Google Scholar 

  • Cecchetti, S., Lam, P., & Mark, C. (1990). Mean reversion in equilibrium asset prices. The American Economic Review, 80, 398–418.

    Google Scholar 

  • Cecchetti, S., Lam, P., & Mark, N. (2000). Asset pricing with distorted beliefs: Are equity returns too good to be true? The American Economic Review, 90, 787–805.

    Article  Google Scholar 

  • Cox, J., & Huang, C. F. (1989). Optimal consumption and portfolio policies when asset prices follow a diffusion processes. Journal of Economic Theory, 49, 33–83.

    Article  Google Scholar 

  • De Long, B., Shleifer, A., Summers, L., & Waldman, R. (1990). Noise trader risk in financial markets. Journal of Political Economy, 98, 703–738.

    Article  Google Scholar 

  • De Long, B., Shleifer, A., Summers, L., & Waldman, R. (1991). The survival of noise traders in financial markets. Journal of Business, 64, 1–19.

    Article  Google Scholar 

  • Dumas, B., Kurshev, A., & Raman, U. (2009). What can rational investors do about excessive volatility and sentiment fluctuations? Journal of Finance, 64, 579–629.

    Article  Google Scholar 

  • Friedman, M. (1953). Essays in Positive Economics. Chicago: University of Chicago Press.

    Google Scholar 

  • Giordani, P., & Soderlind, P. (2006). Is there evidence of pessimism and doubt in subjective distributions? Implications for the equity premium puzzle. Journal of Economic Dynamics and Control, 30, 1027–1043.

    Article  Google Scholar 

  • Hirshleifer, D., & Luo, G. Y. (2001). On the survival of overconfident traders in a competitive securities market. Journal of Financial Markets, 4, 73–84.

    Article  Google Scholar 

  • Kogan, L., Ross, S., Wang, J., & Westerfield, M. (2006). The price impact and survival of irrational traders. Journal of Finance, 61, 195–229.

    Article  Google Scholar 

  • Kogan, L., Ross, S., Wang, J., Westerfield, M. (2009). Market selection. NBER working paper nr. 15189.

  • Kontoyiannis, I., & Meyn, S. P. (2005). Large deviation asymptotics and the spectral theory of multiplicatively regular Markov processes. Electronic Journal of Probability, 10, 61–123.

    Article  Google Scholar 

  • Merton, R. (1980). On estimating the expected return on the market: An explanatory investigation. Journal of Financial Economics, 8, 323–361.

    Article  Google Scholar 

  • Sandroni, A. (2000). Do markets favor agents able to make accurate predictions? Econometrica, 68, 1303–1341.

    Article  Google Scholar 

  • Summers, L. (1986). Does the stock market rationality reflect fundamental values? Journal of Finance, 41, 591–601.

    Article  Google Scholar 

  • Wang, J. (1993). A model of intertemporal asset prices under asymmetric information. Review of Economic Studies, 60, 249–282.

    Article  Google Scholar 

  • Yan, H. (2008). Natural selection in financial markets: Does it work? Management Science, 54, 1935–1950.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emilio Barucci.

Appendix

Appendix

Let \(X(t)\) be a real irreducible Markov process on \({\mathbb {R}}_+\), with an invariant measure \(\nu \) on \({\mathbb {R}}\) and \(X(0)=x\). Let \(p(s,t,x,dy)\) be its transition kernel and \({\mathcal {A}}\) its generator. We need the following definitions.

Definition 2

(Small Set). A subset \(C\) of \({\mathbb {R}}\) is a small set if there exist an \(\epsilon >0\), a probability measure on \([0,+\infty )\) with density \(m(t)\) which admits a mean and probability measure \(\pi \) on \({\mathbb {R}}\) such that for each \(x \in {\mathbb {R}}\) and for each \(A \in {\mathcal {B}}({\mathbb {R}})\)

$$\begin{aligned} \int _0^{+\infty } p(0,t,x,A)\, m(t)\, dt \ge \epsilon \, {\mathbb {I}}_{C}(x) \pi (A), \end{aligned}$$
(44)

where

$$\begin{aligned} p(0,t,x,A)=\int _A p(0,t,x,dy) \end{aligned}$$

and \({\mathbb {I}}_{C}(x)\) denotes the indicator function of the set \(C\).

Definition 3

(Lyapunov function). \(V(x)\) is a Lyapunov function if there exist a “test” function \(W(x):{\mathbb {R}} \rightarrow [1,\infty )\), a small set \(C \subset {\mathbb {R}}\) and two constants \(\delta >0,\; b<+\infty \) such that

$$\begin{aligned} {\mathcal {A}}V(x) \le -\delta W(x) + b \, {\mathbb {I}}_C(x) \end{aligned}$$
(45)

We can now state the following result, see Kontoyiannis and Meyn (2005).

Lemma 1

(“Generalized Ergodic”). Given a Lyapunov function \(V(x)\) and a “test” function \(W(x)\) which satisfy (45), for each function \(F(x):{\mathbb {R}} \rightarrow {\mathbb {R}}\) such that

$$\begin{aligned} \sup \frac{\vert F(x) \vert }{W(x)} < +\infty , \end{aligned}$$
(46)

we have that

$$\begin{aligned} \lim _{t \rightarrow \infty } \frac{1}{t} \int _0^t F(X(t)) = \int F(x) \, \nu (dx) = {\mathbb {E}}_\nu \big [F(x)\big ] \quad a.s. \end{aligned}$$

We are now able to prove the main result used in our analysis.

Theorem 1

Given a Ornstein–Uhlenbeck process \(X(t)\)

$$\begin{aligned} dX(t)=-b(X(t)-a)+\sigma dZ(t), \end{aligned}$$
(47)

the following result holds true

$$\begin{aligned} \lim _{t \rightarrow +\infty } \frac{1}{t} \int _0^t X^2(s)ds = \int x^2 \nu (dx) = a^2+\frac{\sigma ^2}{2b} \quad a.s. \end{aligned}$$
(48)

where \(\nu \) is the invariant measure of \(X(t)\).

Proof

Thanks to the Ergodic Theorem for Markov processes we know that for each continuous and bounded function \(f: {\mathbb {R}} \rightarrow {\mathbb {R}}\) we have

$$\begin{aligned} \lim _{t\rightarrow \infty }\frac{1}{t}\int _0^t f(X(s))\,ds=\int f(x)\,\nu (dx) =E_\nu \big [f(x)\big ] \quad a.s. \end{aligned}$$

In our case, \(f(x)=x^2\) so we need a generalization of the result to a larger class of functions. The generalization is provided by Lemma 1.

In fact we can prove (48) applying Lemma 1 with \(F(x)=x^2\). By the law of \(X(t)\) we have

$$\begin{aligned} p(0,t,x,dy)=\frac{1}{\sqrt{ \frac{\pi \sigma ^2}{2b} (1-e^{-2bt})}} \exp \bigg \{ -\frac{b(y-\mu (t))^2}{\sigma ^2 (1-e^{-2bt})} \bigg \}, \end{aligned}$$

where \(\mu (t)={\mathbb {E}}[X(t)]=a+(x-a) e^{-bt}\).

We must now find a Lyapunov function \(V(x)\), a “test” function \(W(x)\), a “small set” \(C\) and two constants \(\delta >0,\; b<\infty \) such that (45) and (46) are satisfied with \(F(x)=x^2\). The idea is to try with a “test” function \(W(x)\) which is a simple translation of \(F(x)\), assuring that (46) is respected and \(W(x) \ge 1\) for each \(x\) (as requested in the definition for a Lyapunov function). Then let us suppose that

$$\begin{aligned} W(x)=x^2+1. \end{aligned}$$
(49)

Using the expression for Ornstein–Uhlenbeck generator

$$\begin{aligned} {\mathcal {A}}(x)=\frac{\sigma ^2}{2}\frac{d^2}{dx^2}-\alpha x \frac{d}{dx} \end{aligned}$$

in (45) we obtain

$$\begin{aligned} \frac{\sigma ^2}{2}V''(x)-\alpha x V'(x) \le -\delta W(x)+b \, {\mathbb {I}}_C(x), \end{aligned}$$

which, with (49), leads to the following condition for the Lyapunov function \(V(x)\)

$$\begin{aligned} \frac{\sigma ^2}{2}V''(x)-\alpha x V'(x) \le -\delta (x^2+1) +b \, {\mathbb {I}}_C(x). \end{aligned}$$

Let us suppose \(V(x)=\frac{x^2}{2}\), we obtain

$$\begin{aligned} \frac{\sigma ^2}{2}-\alpha x^2 \le -\delta x^2 -\delta + b \, {\mathbb {I}}_C(x) \end{aligned}$$

which is satisfied taking \(\delta < \alpha \), \(b \ge \delta + \frac{\sigma ^2}{2}\) and \(C=[-k,k]\) where \(k= \sqrt{\frac{\sigma ^2+2 \delta }{2(\alpha -\delta )}}\).

We have found our candidates for the Lyapunov function (\(V(x)\)), the “test” function (\(W(x)\)), the set \(C\), the constants \(\delta \) and \(b\). We have now to prove that \(C=[-k,k]\) is a small set. Let \(x\) be \(\in [-k,k]\) and \(t^*\) such that \(1-e^{-2bt} \ge \frac{1}{2}\) for each \(t \ge t^*\).

For each \(t \ge t^*\) we have

$$\begin{aligned} \vert y-\mu (t) \vert ^2&\le y^2 + \mu ^2(t) \\&\le y^2+a^2+ 2\vert a \vert \vert x-a \vert e^{-bt} + \vert x-a \vert ^2 e^{-2bt} \nonumber \\&\le y^2 +a^2 + 2\vert a \vert \vert x-a \vert + \vert x-a \vert ^2 \nonumber \\&\le y^2 +4a^2 +4k \vert a \vert + k^2. \end{aligned}$$

Let \(h=4a^2 +4k \vert a \vert + k^2\). We obtain

$$\begin{aligned} p(0,t,x,dy)&= \frac{1}{\sqrt{ \frac{\pi \sigma ^2}{2b} (1-e^{-2bt})}} \exp \bigg \{ -\frac{b(y-\mu (t))^2}{\sigma ^2 (1-e^{-2bt})} \bigg \} \\&\ge \frac{1}{\sqrt{ \frac{\pi \sigma ^2}{2b} (1-e^{-2bt})}} \exp \bigg \{ -\frac{2b(y^2+h)}{\sigma ^2} \bigg \}. \end{aligned}$$

For each probability density \(m(t)\) on \([0,+\infty )\) then we have that

$$\begin{aligned}&\int _0^{+\infty } p(0,t,x,A) \, m(t) dt \ge \int _{t^*}^{+\infty } p(0,t,x,A)\, m(t)\, dt \\&\quad \ge \int _{t^*}^{+\infty } \left( \int _{A} \frac{1}{\sqrt{ \frac{\pi \sigma ^2}{2b} (1-e^{-2bt})}} \exp \bigg \{ -\frac{2b(y^2+h)}{\sigma ^2} \bigg \} dy \right) \, m(t)\, dt \\&\quad =\int _{A} \left( \int _{t^*}^{+\infty } \frac{1}{\sqrt{ \frac{\pi \sigma ^2}{2b} (1-e^{-2bt})}} \exp \bigg \{ -\frac{2b(y^2+h)}{\sigma ^2} \bigg \}\, m(t) dt \right) dy = \epsilon \, \pi (A), \end{aligned}$$

where

$$\begin{aligned} \pi (A)&= \frac{1}{\sqrt{\frac{\pi \sigma ^2}{2b}}} \int _A \exp \bigg \{ -\frac{2by^2}{\sigma ^2} \bigg \} dy, \end{aligned}$$
(50)
$$\begin{aligned} \epsilon&= c_m \sqrt{\frac{\pi \sigma ^2}{2b}} \exp \bigg \{-\frac{2b h}{\sigma ^2} \bigg \}, \end{aligned}$$
(51)

with

$$\begin{aligned} c_m = \int _{t^*}^{+\infty } \frac{1}{\sqrt{ \frac{\pi \sigma ^2}{2b} (1-e^{-2bt})}} m(t) dt. \end{aligned}$$

It is easy to recognize that \(\pi \) is a gaussian probability measure. We require \(c_m\) to be bounded, this can be achieved choosing \(m(t)\) as a \(\chi ^2\) density random variable.

Condition (44) is then verified with \(\epsilon \) and \(\pi \) given by (51) and (50). We can now apply Lemma 1: (48) follows considering for the invariant measure \(\nu \) of the Ornstein–Uhlenbeck process \(X(t)\), thanks to the fact that the expression for the variance is \(\sigma ^2 / 2b\), and the one for mean is \(a\). \(\square \)

Theorem 2

Let \(Y(t)\) be an Ornstein–Uhlenbeck process with zero long run mean, mean reversion and volatility parameters \(k\) and \(\sigma _Y\), that is

$$\begin{aligned} dY(t)=-kY(t)+\sigma _Y dZ(t) \end{aligned}$$

then the process \(X(t)=\int \limits _0^t Y^2(s)ds -mt\) is such that a.s.

Proof

By Theorem 1

$$\begin{aligned} \lim _{t\rightarrow +\infty }\frac{1}{t}\int _0^t Y^2(s)ds= \frac{\sigma _Y^2}{2k} \quad a.s. \end{aligned}$$

then, if \(t \rightarrow +\infty \), we have

$$\begin{aligned} X(t) \sim \bigg ( \frac{\sigma _Y^2}{2k}-m \bigg )t. \end{aligned}$$

\(\square \)

Theorem 3

Let \((\Omega , {\mathcal {F}},\{ {\mathcal {F}}_t\}, {\mathbb {P}})\) be a stochastic base where a Brownian motion \(Z(t)\) is defined and let \(\{ {\mathcal {F}}_t\}\) be its natural filtration.

Define the translated Brownian motion

$$\begin{aligned} Y(t)=Z(t)+x, \quad x \in {\mathbb {R}}. \end{aligned}$$

and the process \(Z_{{\mathbb {Q}}}(t)\) such that

$$\begin{aligned} dZ^{{\mathbb {Q}}}(t) = d Y(t) - \alpha ( \Pi - Y(t))dt = d Z(t) - \alpha (\Pi -x-Z(t))dt. \end{aligned}$$

Then \(Z_{{\mathbb {Q}}}(t)\) is a \(\mathbb {Q}\)-Brownian motion where

$$\begin{aligned} \frac{d{\mathbb {Q}}}{d{\mathbb {P}}} =\exp \Bigg \{ \int _0^t \alpha (\Pi -x-Z(s)) dZ(s) -\frac{1}{2} \int _0^t \alpha ^2 (\Pi -x-Z(s))^2 ds \Bigg \} \end{aligned}$$

and \(Y(t)\) is a \(\mathbb {Q}\) Ornstein–Uhlenbeck process with long run mean \(\Pi \), mean reversion parameter \(\alpha \) and initial value \(x\).

Proof

The change of measure \(\frac{d{\mathbb {Q}}}{d{\mathbb {P}}}\) follows directly from Girsanov Theorem with \(\theta (t)=\alpha (\Pi -x-Z(t))\). Note that

$$\begin{aligned} dZ_{{\mathbb {Q}}}(t) = d Y(t) - \alpha ( \Pi - Y(t))dt \end{aligned}$$

implies

$$\begin{aligned} d Y(t) = \alpha ( \Pi - Y(t))dt + dZ_{{\mathbb {Q}}}(t), \end{aligned}$$

where we recognize a Ornstein–Uhlenbeck dynamics with long run mean \(\Pi \) and mean reversion parameter \(\alpha \). \(\square \)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barucci, E., Casna, M. On the Market Selection Hypothesis in a Mean Reverting Environment. Comput Econ 44, 101–126 (2014). https://doi.org/10.1007/s10614-013-9400-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10614-013-9400-0

Keywords

JEL Classification

Navigation