Skip to main content
Log in

An Efficient Stochastic Simulation Algorithm for Bayesian Unit Root Testing in Stochastic Volatility Models

  • Published:
Computational Economics Aims and scope Submit manuscript

Abstract

In financial times series analysis, unit root test is one of the most important research issues. This paper is aimed to propose a new simple and efficient stochastic simulation algorithm for computing Bayes factor to detect the unit root of stochastic volatility models. The proposed algorithm is based on a classical thermodynamic integration technique named path sampling. Simulation studies show that the test procedure is efficient under moderate sample size. In the end, the performance of the proposed approach is investigated with a Monte Carlo simulation study and illustrated with a time series of S&P500 return data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Berg A., Meyer R., Yu J. (2004) Deviation information criterion for comparing stochastic volatility models. Journal of Business and Economic statistics 22(4): 107–120

    Article  Google Scholar 

  • Best N., Cowles M. K., Vines K. (1995) CODA convergence diagnostic and output analysis software for Gibbs sampling output version 0.30. MRC Biostatistic Unit, Cambridge

    Google Scholar 

  • Bollerslev T., Chou R. Y., Kroner K. F. (1992) ARCH modeling in finance, a selective review of the theory and empirical evdence. Journal of Econometrics 52: 5–59

    Article  Google Scholar 

  • Bollerslev T., Engle R.F. (1993) Common persistence in conditional variances. Econometrica 61: 166–187

    Article  Google Scholar 

  • Chen M. H., Shao Q. M., Ibrahim J. G. (2000) Monte Carlo methods in Bayesian computation. Springer Series in Statistics, New York

    Google Scholar 

  • Chib S. (1995) Marginal likelihood from the Gibbs output. Journal of the American Statistical Association 90: 1313–1321

    Article  Google Scholar 

  • Chib S., Jeliazkov I. (2001) Marginal likelihood from the Metropolis-Hastings output. Journal of the American Statistical Association 96: 270–281

    Article  Google Scholar 

  • Chou R. Y. (1988) Volatility persistence and stock Valuation: Some empirical evidence using GARCH. Journal of Applied Econometrics 3: 279–294

    Article  Google Scholar 

  • DiCiccio T. J., Kass R. E., Rafety A., Wasserman L. (1997) Computing Bayes factor by combining simulation and asymptotic approximation. Journal of the American Statistical Association 92: 903–915

    Article  Google Scholar 

  • Dickey D. A., Fuller W. A. (1979) Distribution of the estimates for autoregressive times series with a unit root. Journal of the American Statistical Association 74: 427–431

    Article  Google Scholar 

  • Gelman A., Meng X. L. (1998) Simulating normalizing constants: From importance sampling to bridge sampling to path sampling. Statistical Science 3: 163–185

    Google Scholar 

  • Kass R. E., Raftery A. E. (1995) Bayes factor. Journal of the American Statistical Association 90: 773–795

    Article  Google Scholar 

  • Kim S., Shephard N., Chib S. (1998) Stochastic volatility: Likelihood inference and comparison with ARCH models. Review of Economic Studies 12: 361–393

    Article  Google Scholar 

  • Lee S. Y. (2007) Structural equation modeling: A Bayesian approach. Wiley, England

    Book  Google Scholar 

  • Meng X. L., Wong W. H. (1996) Simulating ratios of normalizing constants via simple identity, a theoretical exploration. Statistica Sinica 6: 831–860

    Google Scholar 

  • Meyer R., Yu J. (2000) BUGS for a Bayesian analysis of stochastic volatility models. Econometrics Journal 3: 198–215

    Article  Google Scholar 

  • Shephard N. (2005) Stochastic volatility: Selected readings. Oxford University Press, Oxford

    Google Scholar 

  • So M. K. P., Li W. K. (1999) Bayesian unit-root testing in stochastic volatility models. Journal of Business and Economic statistics 17(4): 491–496

    Article  Google Scholar 

  • Spiegelhalter D. J., Thomas A., Best N. G., Lunn D. (2003) WinBUGS user manual. Version 1.4. MRC Biostatistics Unit, Cambridge, England

    Google Scholar 

  • Sturtz S., Ligges U., Gelman A. (2005) R2WinBUGS: A package for running WinBUGS from R. Journal of Statistical Software 12(3): 1–16

    Google Scholar 

  • Tanner T. A., Wong W. H. (1988) The calculation of posterior distributions by data augmentation. Journal of the American Statistical Association 82: 528–549

    Article  Google Scholar 

  • Tsai R. S. (2002) Analysis of financial time series. Wiley, New York

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhongxin Ni.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, Y., Ni, Z. & Zhang, J. An Efficient Stochastic Simulation Algorithm for Bayesian Unit Root Testing in Stochastic Volatility Models. Comput Econ 37, 237–248 (2011). https://doi.org/10.1007/s10614-011-9252-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10614-011-9252-4

Keywords

Navigation