Skip to main content
Log in

Hyper temporal networks

A tractable generalization of simple temporal networks and its relation to mean payoff games

  • Published:
Constraints Aims and scope Submit manuscript

Abstract

Simple Temporal Networks (STNs) provide a powerful and general tool for representing conjunctions of maximum delay constraints over ordered pairs of temporal variables. In this paper we introduce Hyper Temporal Networks (HyTNs), a strict generalization of STNs, to overcome the limitation of considering only conjunctions of constraints but maintaining a practical efficiency in the consistency check of the instances. In a Hyper Temporal Network a single temporal hyperarc constraint may be defined as a set of two or more maximum delay constraints which is satisfied when at least one of these delay constraints is satisfied. HyTNs are meant as a light generalization of STNs offering an interesting compromise. On one side, there exist practical pseudo-polynomial time algorithms for checking consistency and computing feasible schedules for HyTNs. On the other side, HyTNs offer a more powerful model accommodating natural constraints that cannot be expressed by STNs like “Trigger off exactly δ min before (after) the occurrence of the first (last) event in a set.”, which are used to represent synchronization events in some process aware information systems/workflow models proposed in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

Notes

  1. Distance graph is also called constraint graph by other authors [17]. Moreover, Bellman [3] was the first to describe the relation between shortest paths and difference constraints in a constraint graph.

  2. A strong and basic-form of reduction introduced by Papadimitriou in [38].

  3. A restricted kind of Karp reduction introduced in [24].

  4. We considered not consistent HyTNs because they practically required more time to be solved.

References

  1. van der Aalst, W., ter Hofstede, A., Kiepuszewski, B., & Barros, A. (2003). Workflow patterns. Distributed and Parallel Databases, 14(1), 5–51. doi:10.1023/A:1022883727209.

    Article  Google Scholar 

  2. Barták, R., & Čepek, O. (2007). Temporal networks with alternatives: Complexity and model. In Wilson, D., & Sutcliffe, G. (Eds.), Proceedings of the Twentieth International Florida Artificial Intelligence Research Society Conference (pp. 641–646). Key West: AAAI Press.

    Google Scholar 

  3. Bellman, R. (1958). On a routing problem. Quarterly of Applied Mathematics, 16(1), 87–90.

    Article  MathSciNet  MATH  Google Scholar 

  4. Bettini, C., Wang, X.S., & Jajodia, S. (2002). Temporal reasoning in workflow systems, (Vol. 11.

  5. Björklund, H., & Vorobyov, S. (2007). A combinatorial strongly subexponential strategy improvement algorithm for mean payoff games. Discrete Applied Mathematics, 155(2), 210–229. doi:10.1016/j.dam.2006.04.029.

    Article  MathSciNet  MATH  Google Scholar 

  6. Brim, L., & Chaloupka, J. (2012). Using strategy improvement to stay alive. International Journal of Foundations of Computer Science, 23(3), 585–608. doi:10.1142/S0129054112400291.

    Article  MathSciNet  MATH  Google Scholar 

  7. Brim, L., Chaloupka, J., Doyen, L., Gentilini, R., & Raskin, J. F. (2011). Faster algorithms for mean-payoff games. Formal Methods in System Design, 38(2), 97–118. doi:10.1007/s10703-010-0105-x.

    Article  MATH  Google Scholar 

  8. Chinn, S. J., & Madey, G. R. (2000). Temporal representation and reasoning for workflow in engineering design change review. IEEE Transactions on Engineering Management, 47(4), 485–492. doi:10.1109/17.895343.

    Article  Google Scholar 

  9. Combi, C., Gambini, M., Migliorini, S., & Posenato, R. (2012). Modelling temporal, data-centric medical processes. In Proceedings of the 2nd ACM SIGHIT International Health Informatics Symposium, IHI ’12 (pp. 141–150). New York: ACM. doi:10.1145/2110363.2110382.

    Chapter  Google Scholar 

  10. Combi, C., Gambini, M., Migliorini, S., & Posenato, R. (2014). Representing business processes through a temporal data-centric workflow modeling language: An application to the management of clinical pathways. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 44(9), 1182–1203. doi:10.1109/TSMC.2014.2300055.

    Article  Google Scholar 

  11. Combi, C., Gozzi, M., Posenato, R., & Pozzi, G. (2012). Conceptual modeling of flexible temporal workflows. ACM Transactions Autonomous Adaptive Systems, 7 (2), 19:1–19:29. doi:10.1145/2240166.2240169.

    Article  Google Scholar 

  12. Combi, C., & Posenato, R. (2009). Controllability in temporal conceptual workflow schemata. In BPM 2009 - Proceedings of the 7th Business Process Management Conference (pp. 64–79). doi:10.1007/978-3-642-03848-8_6.

  13. Combi, C., & Pozzi, G. (2004). Architectures for a temporal workflow management system. In Proceedings of the 2004 ACM symp. on applied computing, SAC ’04 (pp. 659–666). New York: ACM, DOI 10.1145/967900.968040.

    Chapter  Google Scholar 

  14. Comin, C. (2015). A HyTN Consistency Check Algorithm Implementation in C++. http://profs.scienze.univr.it/posenato/software/hytn/2015_v1_Code.tgz.

  15. Comin, C., Posenato, R., & Rizzi, R. (2014). A tractable generalization of simple temporal networks and its relation to mean payoff games. In 21St international symposium on temporal representation and reasoning (TIME 2014) (pp. 7–16): IEEE CPS. doi:10.1109/TIME.2014.19.

  16. Comin, C., & Rizzi, R. (2015). Dynamic consistency of conditional simple temporal networks via mean payoff games: a singly-exponential time DC-checking. In 22Nd international symposium on temporal representation and reasoning (TIME 2015) (pp. 19–28): IEEE CPS. doi:10.1109/TIME.2015.18.

  17. Cormen, T.H., Leiserson, C.E., Rivest, R.L., & Stein, C. (2001). Introduction to algorithms the MIT press.

  18. Dechter, R., Meiri, I., & Pearl, J. (1991). Temporal constraint networks. Artificial Intelligence, 49(1–3), 61–95. doi:10.1016/0004-3702(91)90006-6.

    Article  MathSciNet  MATH  Google Scholar 

  19. Eder, J., Gruber, W., & Panagos, E. (2000). Temporal modeling of workflows with conditional execution paths. In Ibrahim, M., Küng, J., & Revell, N. (Eds.), Database and expert systems applications (DEXA 2000), LNCS, (Vol. 1873 pp. 243–253). Berlin: Springer. doi:10.1007/3-540-44469-6_23.

    Chapter  Google Scholar 

  20. Eder, J., Panagos, E., & Rabinovich, M. (1999). Time constraints in workflow systems. In Jarke, M., & Oberweis, A. (Eds.), Advanced Information Systems Engineering, LNCS, (Vol. 1626 pp. 286–300). Berlin: Springer. doi:10.1007/3-540-48738-7_22.

    Chapter  Google Scholar 

  21. Ehrenfeucht, A., & Mycielski, J. (1979). Positional strategies for mean payoff games. International Journal of Game Theory, 8(2), 109–113. doi:10.1007/BF01768705.

    Article  MathSciNet  MATH  Google Scholar 

  22. Ford Jr., L. R., & Fulkerson, D. R. (1962). Flows in networks Vol. 3: Princeton University Press.

  23. Gonzalez del Foyo, P. M., & Reinaldo Silva, J. (2008). Using time Petri Nets for modeling and verification of timed constrained workflow systems, ABCM Symposium series in mechatronics (pp. 471–478). Brazil: Dept. Of Mechatronics, University of São Paulo.

  24. Garey, M. R., & Johnson, D. S. (1979). Computers and intractability: A guide to the theory of NP-completeness. New York: Freeman.

    MATH  Google Scholar 

  25. Hollingsworth, D. (1995). The workflow reference model. http://www.wfmc.org/standards/model.htm.

  26. Hunsberger, L., Posenato, R., & Combi, C. (2015). A sound-and-complete propagation-based algorithm for checking the dynamic consistency of conditional simple temporal networks. In Grandi, F., Lange, M., & Lomuscio, A. (Eds.), 22st International Symposium on Temporal Representation and Reasoning (TIME 2015) (pp. 4–18). IEEE CPS. doi:10.1109/TIME.2015.26.

  27. Jurdziński, M. (1998). Deciding the winner in parity games is in UP \(\cap \) co-UP. Information Processing Letters, 68(3), 119–124. doi:10.1016/S0020-0190(98)00150-1.

    Article  MathSciNet  MATH  Google Scholar 

  28. Khatib, L., Morris, P., Morris, R., & Rossi, F. (2001). Temporal constraint reasoning with preferences, Proceedings of the 17th international joint conference on artificial intelligence - volume 1, IJCAI \(^{\prime }\) 01 (pp. 322–327). San Francisco: Morgan Kaufmann.

    Google Scholar 

  29. Khatib, L., Morris, P., Morris, R., Rossi, F., Sperduti, A., & Venable, K.B. (2007). Solving and learning a tractable class of soft temporal constraints: Theoretical and experimental results. AI Communications, 20(3), 181–209.

    MathSciNet  MATH  Google Scholar 

  30. Koubarakis, M. (1997). From local to global consistency in temporal constraint networks. Theoretical Computer Science, 173(1), 89–112. doi:10.1016/S0304-3975(96)00192-2.

    Article  MathSciNet  MATH  Google Scholar 

  31. Lanz, A., & Reichert, M. (2014). Enabling time-aware process support with the atapis toolset. In Limonad, L., & Weber, B. (Eds.), Proceedings of the BPM Demo Sessions 2014, CEUR Workshop Proceedings, (Vol. 1295 pp. 41–45): CEUR.

  32. Lanz, A., Weber, B., & Reichert, M. (2012). Time patterns for process-aware information systems. Requirements Engineering, 19(2), 113–141. doi:10.1007/s00766-012-0162-3.

    Article  Google Scholar 

  33. Lifshits, Y., & Pavlov, D. (2007). Potential theory for mean payoff games. Journal of Mathematical Sciences, 145(3), 4967–4974. doi:10.1007/s10958-007-0331-y.

    Article  MathSciNet  Google Scholar 

  34. Mendling, J., Reijers, H. A., & van der Aalst, W. M. P. (2010). Seven process modeling guidelines (7PMG). Information and Software Technology, 52(2), 127–136. doi:10.1016/j.infsof.2009.08.004.

    Article  Google Scholar 

  35. Merlin, P., & Farber, D. J. (1976). Recoverability of communication protocols–implications of a theoretical study. IEEE Transactions on Communications, 24(9), 1036–1043. doi:10.1109/TCOM.1976.1093424.

    Article  MathSciNet  MATH  Google Scholar 

  36. Morris, P., Muscettola, N., & Vidal, T. (2001). Dynamic control of plans with temporal uncertainty. In Proceedings of the 17th international joint conference on artificial intelligence - volume 1, IJCAI’01 (pp. 494–499). San Francisco: Morgan Kaufmann.

    Google Scholar 

  37. Pani, A., & Bhattacharjee, G. (2001). Temporal representation and reasoning in artificial intelligence: A review. Mathematical and Computer Modelling, 34(1-2), 55–80. doi:10.1016/S0895-7177(01)00049-8.

    Article  MATH  Google Scholar 

  38. Papadimitriou, C. H. (1994). Computational complexity, Addison-Wesley.

  39. pgsolver: The pgsolver collection of parity game solvers. https://github.com/tcsprojects/pgsolver (2013).

  40. Satish Kumar, T. K. (2005). On the tractability of restricted disjunctive temporal problems. In ICAPS 2005 - Proceedings of the 15th international conference on automated planning and scheduling (pp. 110–119).

  41. Schewe, S. (2008). An optimal strategy improvement algorithm for solving parity and payoff games. In Kaminski, M., & Martini, S. (Eds.), Computer science logic, LNCS, (Vol. 5213 pp. 369–384). Springer. doi:10.1007/978-3-540-87531-4_27.

  42. Schewe, S., Trivedi, A., & Varghese, T. (2015). Symmetric strategy improvement. In Halldórsson, M.M., Iwama, K., Kobayashi, N., & Speckmann, B. (Eds.), Automata, Languages, and Programming - 42nd International Colloquium, ICALP 2015, Kyoto, Japan, July 6-10, 2015, Proceedings, Part II, Lecture Notes in Computer Science, (Vol. 9135 pp. 388–400). Springer. doi:10.1007/ 978-3-662-47666-6_31.

  43. Smith, D., Frank, J., & Jónsson, A. (2000). Bridging the gap between planning and scheduling. Knowledge Engineering Review, 15(1), 47–83. doi:10.1017/S0269888900001089.

    Article  Google Scholar 

  44. Stergiou, K., & Koubarakis, M. (2000). Backtracking algorithms for disjunctions of temporal constraints. Artificial Intelligence, 120(1), 81–117. doi:10.1016/S0004-3702(00)00019-9.

    Article  MathSciNet  MATH  Google Scholar 

  45. Tsamardinos, I., Vidal, T., & Pollack, M. E. (2003). Ctp: A new constraint-based formalism for conditional, temporal planning. Constraints, 8(4), 365–388. doi:10.1023/A:1025894003623.

    Article  MathSciNet  MATH  Google Scholar 

  46. Vidal, T., & Fargier, H. (1999). Handling contingency in temporal constraint networks: from consistency to controllabilities. Journal of Experimental and Theoretical Artificial Intelligence, 11(1), 23–45. doi:10.1080/095281399146607.

    Article  MATH  Google Scholar 

  47. Zwick, U., & Paterson, M. (1996). The complexity of mean payoff games on graphs. Theoretical Computer Science, 158(1–2), 343–359. doi:10.1016/0304-3975(95)00188-3.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

Supported by Department of Computer Science, University of Verona under PhD grant “Computational Mathematics and Biology” on a co-tutelle agreement with Université Paris-Est in Marne-la-Vallée

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roberto Posenato.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Comin, C., Posenato, R. & Rizzi, R. Hyper temporal networks. Constraints 22, 152–190 (2017). https://doi.org/10.1007/s10601-016-9243-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10601-016-9243-0

Keywords

Navigation