Skip to main content
Log in

New Benzophenone and Bioactive Constituents from Hypericum nagasawae

  • Published:
Chemistry of Natural Compounds Aims and scope

A new benzophenone derivative, hyperinagasone (1), has been isolated from the aerial part of Hypericum nagasawae together with six known compounds, trichadonic acid (2), norathyriol (3), euxanthone (4), subalatin (5), hyperielliptone D (6), and 1,4-O-diferuloylsecoisolariciresinol (7). The structure of new compound 1 was determined through spectroscopic and MS analyses. Among the isolates, compounds 2, 4, and 7 exhibited cytotoxicities, with IC50 values of 17.25 ± 1.55, 18.14 ± 1.07, and 10.31 ± 0.92 μM, respectively, against the DLD-1 cell line. Compounds 2, 5, and 7 also exhibited cytotoxicities, with IC50 values of 15.10 ± 1.13, 15.89 ± 0.94, and 17.54 ± 1.16 μM, respectively, against the CCRF-CEM cell line. Norathyriol (3) and 7 exhibited cytotoxicities, with IC50 values of 19.62 ± 2.88 and 6.26 ± 0.50 μM, respectively, against HL-60 cell line. Hyperinagasone (1) and 1,4-O-diferuloylsecoisolariciresinol (7) exhibited cytotoxicities, with IC50 values of 16.83 ± 1.55 and 11.38 ± 0.87 μM, respectively, against the IMR-32 cell line. In addition, 3, 4, and 7 showed potent inhibition, with IC50 values of 5.89 ± 0.43, 7.55 ± 0.54, and 8.12 ± 0.91 μM, respectively, against LPS-induced NO generation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. K. B. Robson, Guttiferae in Flora of Taiwan, Vol. 2, 2nd Ed., Editorial Committee of the Flora of Taiwan, Taipei, Taiwan, 1996, pp. 694–714.

  2. F. S. Wu, C. J. Hung, C. L. Lin, H. Y. Huang, Y. H. Kuo, T. H. Chang, C. L. Chen, P. J. Sung, M. J. Cheng, C. W. Kuo, and J. J. Chen, Chem. Nat. Compd., 57, 645 (2021).

    Article  CAS  Google Scholar 

  3. D. Hong, F. Yin, L. H. Hu, and P. Lu, Phytochemistry, 65, 2595 (2004).

    Article  CAS  Google Scholar 

  4. C. Y. Huang, T. C. Chang, Y. J. Wu, Y. Chen, and J. J. Chen, Molecules, 25, 4463 (2020).

    Article  CAS  Google Scholar 

  5. Z. Y. Xiao, Y. H. Zeng, Q. Mu, W. K. P. Shiu, and S. Gibbons, Chem. Biodiv., 7, 953 (2010).

    Article  CAS  Google Scholar 

  6. Q. Chen, L. Di, Y. Zhang, and N. Li, J. Ethnopharmacol., 259, 112948 (2020).

    Article  CAS  Google Scholar 

  7. H. Zhu, C. Chen, J. Yang, X. N. Li, J. Liu, B. Sun, S. X. Huang, D. Li, G. Yao, Z. Luo, Y. Li, J. Zhang, Y. Xue, and Y. Zhang, Org. Lett., 16, 6322 (2014).

    Article  CAS  Google Scholar 

  8. P. T. Nedialkov, D. Zheleva-Dimitrova, G. Momekov, K. Karlov, U. Girreser, and G. M. Kitanov, Nat. Prod. Res., 25, 1743 (2011).

    Article  CAS  Google Scholar 

  9. M.-G. F. Guefack, F. Damen, A. T. Mbaveng, S. B. Tankeo, G. T. M. Bitchagno, I. Celik, J. D. S. Mpetga, and V. Kuete, Evid. Based Complement. Alternat. Med., 2020, 4314807 (2020).

    Article  Google Scholar 

  10. C. Cirak, Biochem. Syst. Ecol., 34, 897 (2006).

    Article  CAS  Google Scholar 

  11. T. T. Dao, T. T. Dang, P. H. Nguyen, E. Kim, P. T. Thuong, and W. K. Oh, Bioorg. Med. Chem. Lett., 22, 3688 (2012).

    Article  CAS  Google Scholar 

  12. M.-T. Chen, Heterocycles, 27, 2589 (1988).

    Article  CAS  Google Scholar 

  13. F. Damen, J. D. Simo Mpetga, O. M. F. Demgne, I. Celik, B. E. N. Wamba, L. A. Tapondjou, V. P. Beng, S. Levent, V. Kuete, M. Tene, Nat. Prod. Res., 36, 2071 (2022).

    Article  CAS  Google Scholar 

  14. S.-S. Moon, A. A. Rahman, J.-Y. Kim, and S.-H. Kee, Bioorg. Med. Chem., 16, 7264 (2008).

    Article  CAS  Google Scholar 

  15. T. Mosmann, J. Immunol. Meth., 65, 55 (1983).

    Article  CAS  Google Scholar 

  16. M. Johansson, B. Kopcke, H. Anke, and O. Sterner, J. Antibiot., 55, 104 (2002).

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This research was supported by the grant from the Ministry of Science and Technology, Taiwan (MOST 109-2320-B-010-029-MY3), awarded to Prof. J.-J. Chen. This work was also supported by the grants from Far Eastern Memorial Hospital–National Yang Ming Chiao Tung University Joint Research Program (110DN21), Medical Research Fund (KAFGH-A-110002) of Kaohsiung Armed Forces General Hospital, and Kaohsiung Veterans General Hospital Tainan Branch (VHYK110-07). We gratefully thank Ms. Shou-Ling Huang and Dr. Iren Wang for the assistance in NMR experiments of the Instrumentation Center at NTU, which is supported by the Ministry of Science and Technology, Taiwan. Fu-Sen Wu, I-Chou Wang, Chia-Ching Liaw, and Hsueh-Yang Huang have contributed equally to this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jih-Jung Chen.

Additional information

Published in Khimiya Prirodnykh Soedinenii, No. 5, September–October, 2022, pp. 704–708.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, FS., Wang, IC., Liaw, CC. et al. New Benzophenone and Bioactive Constituents from Hypericum nagasawae. Chem Nat Compd 58, 833–838 (2022). https://doi.org/10.1007/s10600-022-03810-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10600-022-03810-x

Keywords

Navigation