Skip to main content
Log in

Two-Point Step Size Gradient Method for Solving a Deep Learning Problem

  • Published:
Computational Mathematics and Modeling Aims and scope Submit manuscript

This paper is devoted to an analysis of the rate of deep belief learning by multilayer neural networks. In designing neural networks, many authors have applied the mean field approximation (MFA) to establish that the state of neurons in hidden layers is active. To study the convergence of the MFAs, we transform the original problem to a minimization one. The object of investigation is the Barzilai–Borwein method for solving the obtained optimization problem. The essence of the two-point step size gradient method is its variable steplength. The appropriate steplength depends on the objective functional. Original steplengths are obtained and compared with the classical steplength. Sufficient conditions for existence and uniqueness of the weak solution are established. A rigorous proof of the convergence theorem is presented. Various tests with different kinds of weight matrices are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. E. Hinton, A. Krizhevsky, N. Srivastava, I. Sutskever, and R. Salakhutdinov, “Dropout: a simple way to prevent neural networks from overfitting,” J. Mach. Learn. Res., 15, 1929–1958 (2014).

    MathSciNet  MATH  Google Scholar 

  2. H. K. Jabbar and R. Z. Khan, “Methods to avoid over-fitting and under-fitting in supervised machine learning (comparative study),” in: Computer Science, Communication & Instrumentation Devices, Editors: J. Stephen, H. Rohil, and S. Vasavi, (2015), pp. 163–172.

  3. R. Salakhutdinov and G. E. Hinton, “Deep Boltzmann Machines,” Proc. Conf. Artif. Intel. Stat. (AISTATS 2009), 448–455 (2009).

  4. L. Bottou, F. E. Curtis, and Jorge Nocedal, “Optimization methods for large-scale machine learning,” SIAM Rev., 60, 2, 223–311 (2018).

    Article  MathSciNet  Google Scholar 

  5. R. Salakhutdinov, “Learning Deep Boltzmann Machines using adaptive MCMC,” Proc. 27th Int. Conf. Mach. Lear., Haifa, Israel, 943–950 (2010).

  6. R. Salakhutdinov and H. Larochelle, “Efficient learning of Deep Boltzmann Machines,” J. Mach. Learn. Res., 9, 693–700 (2010).

    Google Scholar 

  7. G. Hinton and R. Salakhutdinov, “An efficient learning procedure for deep Boltzmann machines,” Neural Comput.,24, 8, 1967–2006 (2012).

    Article  MathSciNet  Google Scholar 

  8. K. Cho, T. Raiko, A. Ilin, and J. Karhunen, “A two-stage pretraining algorithm for Deep Boltzmann Machines,” Artif. Neural Netw. Mach. Learn. (ICANN), 8131, 106-113 (2013).

    Google Scholar 

  9. K. Cho, T. Raiko, and A. Ilin, “Gaussian–Bernoulli Deep Boltzmann Machine,” IEEE Int. Joint Conf. Neural Netw., Dallas, Texas, USA, 1–7 (2013).

  10. A. Dremeau, “Boltzmann machine and mean-field approximation for structured sparse decompositions,” IEEE Trans Signal Process., 60, 7, 3425–3438 (2012).

    Article  MathSciNet  Google Scholar 

  11. N. Srivastava and R. Salakhutdinov, “Multimodal learning with Deep Boltzmann Machines,” J. Mach. Learn. Res., 15, 2949–2980 (2014).

    MathSciNet  MATH  Google Scholar 

  12. J. Barzilai and J. M. Borwein, “Two-point step size gradient methods,” IMA J. Numer. Anal., 8, 1, 141–148 (1988).

    Article  MathSciNet  Google Scholar 

  13. E. G. Birgin, J. M. Martínez, and M. Raydan, “Spectral projected gradient methods: review and perspectives,” J. Stat. Softw., 60, 3, 1–21 (2014).

    Article  Google Scholar 

  14. M. Raydan, “On the Barzilai and Borwein choice of steplength for the gradient method,” IMA J. Numer. Anal., 13, 3, 321–326 (1993).

    Article  MathSciNet  Google Scholar 

  15. T. D. Todorov, “Nonlocal problem for a general second-order elliptic operator,” Comput. Math. Appl., 69, 5, 411–422 (2015).

    Article  MathSciNet  Google Scholar 

  16. D. Wei, “Finite element approximations of solutions to p-harmonic equation with Dirichlet data,” Numert. Func. Anal. Optim., 10(11&12), 1235–1251 (1989).

    Article  MathSciNet  Google Scholar 

  17. T. D. Todorov, “Dirichlet problem for a nonlocal p-Laplacian elliptic equation,” Comput. Math. Appl.,76, 6, 1261–1274 (2018).

    Article  MathSciNet  Google Scholar 

  18. A. Zhang, J. Zhu, and B. Zhang, “Max-margin infinite hidden Markov models,” Proc. 31st Int. Conf. Mach. Learn. (PMLR), 32, 1, 315–323 (2014).

    Google Scholar 

  19. G. S. Tsanev, “Deep multiconnected Boltzmann machine for classification,” Amer. J. Eng. Res., 6, 5, 186–194 (2017).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. D. Todorov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Todorov, T.D., Tsanev, G.S. Two-Point Step Size Gradient Method for Solving a Deep Learning Problem. Comput Math Model 30, 427–438 (2019). https://doi.org/10.1007/s10598-019-09468-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10598-019-09468-5

Keywords

Navigation