Skip to main content

Advertisement

Log in

A mineral precipitation model based on the volume of fluid method

  • Original Paper
  • Published:
Computational Geosciences Aims and scope Submit manuscript

Abstract

A novel volume of fluid method is presented for mineral precipitation coupled with fluid flow and reactive transport. The approach describes the fluid-solid interface as a smooth transitional region, which is designed to provide the same precipitation rate and viscous drag force as a sharp interface. Specifically, the governing equation of mineral precipitation is discretized by an upwind scheme, and a rigorous effective viscosity model is derived around the interface. The model is validated against analytical solutions for mineral precipitation in channel and ring-shaped structures. It also compares well with interface tracking simulations of advection-diffusion-reaction problems. The methodology is finally employed to model mineral precipitation in fracture networks, which is challenging due to the low porosity and complex geometry. Compared to other approaches, the proposed model has a concise algorithm and contains no free parameters. In the modeling, only the pore space requires meshing, which improves the computational efficiency especially for low-porosity media.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kampman, N., Bickle, M., Wigley, M., Dubacq, B.: Fluid flow and CO2-fluid-mineral interactions during CO2-storage in sedimentary basins. Chem. Geol. 369, 22–50 (2014)

    Article  CAS  Google Scholar 

  2. Xu, R., Li, R., Ma, J., He, D., Jiang, P.: Effect of mineral dissolution/precipitation and CO2 exsolution on CO2 transport in geological carbon storage. Acc. Chem. Res. 50(9), 2056–2066 (2017)

    Article  CAS  Google Scholar 

  3. Entrekin, S., Evans-White, M., Johnson, B., Hagenbuch, E.: Rapid expansion of natural gas development poses a threat to surface waters. Front. Ecol. Environ. 9(9), 503–511 (2011)

    Article  Google Scholar 

  4. Paukert Vankeuren, A.N., Hakala, J.A., Jarvis, K., Moore, J.E.: Mineral reactions in shale gas reservoirs: Barite scale formation from reusing produced water as hydraulic fracturing fluid. Environ. Sci. Technol. 51(16), 9391–9402 (2017)

    Article  CAS  Google Scholar 

  5. Rabemanana, V., Vuataz, F.-D., Kohl, T., André, L.: Simulation of mineral precipitation and dissolution in the 5-km deep enhanced geothermal reservoir at Soultz-sous-Forêts, France. Proceedings World Geothermal Congress (2005)

  6. Burns, P.C., Klingensmith, A.L.: Uranium mineralogy and neptunium mobility. Elements 2(6), 351–356 (2006)

    Article  CAS  Google Scholar 

  7. Ling, B., et al.: Probing multiscale dissolution dynamics in natural rocks through microfluidics and compositional analysis. Proc. Natl. Acad. Sci. 119(32), e2122520119 (2022)

    Article  CAS  Google Scholar 

  8. Borgia, A., Pruess, K., Kneafsey, T.J., Oldenburg, C.M., Pan, L.: Numerical simulation of salt precipitation in the fractures of a CO2-enhanced geothermal system. Geothermics 44, 13–22 (2012)

    Article  CAS  Google Scholar 

  9. Deng, H., et al.: A 2.5 D reactive transport model for fracture alteration simulation. Environ. Sci. Technol. 50(14), 7564–7571 (2016)

    Article  CAS  Google Scholar 

  10. Carman, P.C.: Fluid flow through granular beds. Chem. Eng. Res. Design 75, S32–S48 (1997)

    Article  Google Scholar 

  11. Menefee, A.H., et al.: Rapid mineral precipitation during shear fracturing of carbonate-rich shales. J. Geophys. Res. Solid Earth 125(6), e2019JB018864 (2020)

    Article  Google Scholar 

  12. Vidic, R.D., Brantley, S.L., Vandenbossche, J.M., Yoxtheimer, D., Abad, J.D.: Impact of shale gas development on regional water quality. Science 340(6134), 1235009 (2013)

    Article  CAS  Google Scholar 

  13. Ge, Q., Yap, Y., Vargas, F., Zhang, M., Chai, J.: A total concentration method for modeling of deposition. Numer. Heat Transf. B: Fundam. 61(4), 311–328 (2012)

    Article  Google Scholar 

  14. Juric, D., Tryggvason, G.: A front-tracking method for dendritic solidification. J. Comput. Phys. 123(1), 127–148 (1996)

    Article  CAS  Google Scholar 

  15. Starchenko, V., Marra, C.J., Ladd, A.J.: Three-dimensional simulations of fracture dissolution. J. Geophys. Res. Solid Earth 121(9), 6421–6444 (2016)

    Article  Google Scholar 

  16. Starchenko, V., Ladd, A.J.: The development of wormholes in laboratory-scale fractures: Perspectives from three-dimensional simulations. Water Resour. Res. 54(10), 7946–7959 (2018)

    Article  Google Scholar 

  17. Ladd, A.J., Szymczak, P.: Reactive flows in porous media: Challenges in theoretical and numerical methods. Annu. Rev. Chem. Biomol. Eng. 12(1), 543–571 (2021)

    Article  CAS  Google Scholar 

  18. Kang, Q., Zhang, D., Chen, S.: Simulation of dissolution and precipitation in porous media. J. Geophys. Res. Solid Earth 108(B10), 2505 (2003)

    Article  Google Scholar 

  19. Huber, C., Shafei, B., Parmigiani, A.: A new pore-scale model for linear and non-linear heterogeneous dissolution and precipitation. Geochimica et Cosmochimica Acta 124, 109–130 (2014)

    Article  CAS  Google Scholar 

  20. Poonoosamy, J., et al.: A microfluidic experiment and pore scale modelling diagnostics for assessing mineral precipitation and dissolution in confined spaces. Chem. Geol. 528, 119264 (2019)

    Article  CAS  Google Scholar 

  21. Tartakovsky, A.M., Meakin, P., Scheibe, T.D., West, R.M.E.: Simulations of reactive transport and precipitation with smoothed particle hydrodynamics. J. Comput. Phys. 222(2), 654–672 (2007)

    Article  CAS  Google Scholar 

  22. Li, X., Huang, H., Meakin, P.: A three-dimensional level set simulation of coupled reactive transport and precipitation/dissolution. Int. J. Heat Mass Trans. 53(13–14), 2908–2923 (2010)

    Article  CAS  Google Scholar 

  23. Ray, N., Oberlander, J., Frolkovic, P.: Numerical investigation of a fully coupled micro-macro model for mineral dissolution and precipitation. Comput. Geosci. 23(5), 1173–1192 (2019)

    Article  Google Scholar 

  24. Xu, Z., Meakin, P.: Phase-field modeling of solute precipitation and dissolution. J. Chem. Phys 129(1), 014705 (2008)

    Article  Google Scholar 

  25. Xu, Z., Huang, H., Li, X., Meakin, P.: Phase field and level set methods for modeling solute precipitation and/or dissolution. Comput. Phys. Commun. 183(1), 15–19 (2012)

    Article  CAS  Google Scholar 

  26. Soulaine, C., Tchelepi, H.A.: Micro-continuum approach for pore-scale simulation of subsurface processes. Transport Porous Med. 113(3), 431–456 (2016)

    Article  CAS  Google Scholar 

  27. Soulaine, C., Roman, S., Kovscek, A., Tchelepi, H.A.: Mineral dissolution and wormholing from a pore-scale perspective. J. Fluid Mech. 827, 457–483 (2017)

    Article  CAS  Google Scholar 

  28. Yang, F., Stack, A.G., Starchenko, V.: Micro-continuum approach for mineral precipitation. Sci. Rep. 11(1), 1–14 (2021)

  29. Deng, H., Tournassat, C., Molins, S., Claret, F., Steefel, C.: A pore-scale investigation of mineral precipitation driven diffusivity change at the column-scale. Water Resour. Res. 57(5), e2020WR028483 (2021)

    Article  Google Scholar 

  30. Deng, H., Poonoosamy, J., Molins, S.: A reactive transport modeling perspective on the dynamics of interface-coupled dissolution-precipitation. Appl. Geochem. 137, 105207 (2022)

    Article  CAS  Google Scholar 

  31. Soulaine, C., Pavuluri, S., Claret, F., Tournassat, C.: porousMedia4Foam: Multi-scale open-source platform for hydro-geochemical simulations with OpenFOAM®. Environ. Model. Softw. 145, 105199 (2021)

    Article  Google Scholar 

  32. Goyeau, B., Benihaddadene, T., Gobin, D., Quintard, M.: Averaged momentum equation for flow through a nonhomogenenous porous structure. Transport Porous Med. 28(1), 19–50 (1997)

    Article  CAS  Google Scholar 

  33. Noiriel, C., Soulaine, C.: Pore-scale imaging and modelling of reactive flow in evolving porous media: Tracking the dynamics of the fluid-rock interface. Transport Porous Med. 140(1), 181–213 (2021)

    Article  CAS  Google Scholar 

  34. Braissant, O., Cailleau, G., Dupraz, C., Verrecchia, E.P.: Bacterially induced mineralization of calcium carbonate in terrestrial environments: the role of exopolysaccharides and amino acids. J. Sediment. Res. 73(3), 485–490 (2003)

    Article  CAS  Google Scholar 

  35. Fernandez-Martinez, A., Hu, Y., Lee, B., Jun, Y.-S., Waychunas, G.A.: In situ determination of interfacial energies between heterogeneously nucleated CaCO3 and quartz substrates: thermodynamics of CO2 mineral trapping. Environ. Sci. Technol. 47(1), 102–109 (2013)

    Article  CAS  Google Scholar 

  36. Issa, R.I.: Solution of the implicitly discretised fluid flow equations by operator-splitting. J. Comput. Phys. 62(1), 40–65 (1986)

    Article  Google Scholar 

  37. Mourzenko, V., Békri, S., Thovert, J., Adler, P.: Deposition in fractures. Chem. Eng. Commun. 148(1), 431–464 (1996)

    Article  Google Scholar 

  38. Li, X., Huang, H., Meakin, P.: Level set simulation of coupled advection-diffusion and pore structure evolution due to mineral precipitation in porous media. Water Resour. Res. 44(12), W12407 (2008)

    Article  Google Scholar 

  39. Wang, Z., Battiato, I.: Patch-based multiscale algorithm for flow and reactive transport in fracture-microcrack systems in shales. Water Resour. Res. 56(2), e2019WR025960 (2020)

    Article  Google Scholar 

  40. Wang, Z., Battiato, I.: Upscaling reactive transport and clogging in shale microcracks by deep learning. Water Resour. Res. 57(4), e2020WR029125 (2021)

    Article  Google Scholar 

  41. Molins, S., et al.: Simulation of mineral dissolution at the pore scale with evolving fluid-solid interfaces: Review of approaches and benchmark problem set. Comput. Geosci. 25, 1285–1318 (2021)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported as part of the Center for Mechanistic Control of Water-Hydrocarbon-Rock Interactions in Unconventional and Tight Oil Formations (CMC-UF), an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science under DOE (BES) Award DE-SC0019165. Data will be made available on reasonable request.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ilenia Battiato.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflict of interest/competing interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A Effective viscosity model

Appendix A Effective viscosity model

In this appendix we will prove that the effective viscosity model, described by Eq. (2), can guarantee that the smooth interface exerts the same viscous drag force on the fluid as a sharp interface. We start by constructing a local coordinate system, where the x axis is normal to the interface. The transitional region of the smooth interface is from \(x_1\) to \(x_2\), with \(x_1\) and \(x_2\) in the liquid and solid phases, respectively:

$$\begin{aligned}&\phi (x_1) = 1, \;\; \phi (x_2) = 0, \end{aligned}$$
(1a)
$$\begin{aligned}&u(x_1) = u_1, \;\; u(x_2) = 0, \end{aligned}$$
(1b)

where \(u = \Vert \textbf{u}\Vert \) is the velocity magnitude. Since the viscous force is dominant near the wall boundary, we can neglect the inertial and pressure terms in Eq. () and only keep the viscous term:

$$\begin{aligned}&\nabla \cdot ( \mu _{eff} \nabla \textbf{u}) = 0. \end{aligned}$$
(2)

We assume the derivative in the normal direction (x direction) is much larger than in the tangential direction and there is no penetration (\(\textbf{u}\cdot \textbf{x}= 0)\):

$$\begin{aligned}&\frac{d}{dx} (\mu _{eff} \frac{d u}{dx}) = 0, \end{aligned}$$
(3)
$$\begin{aligned}&f = -\mu _{eff} \frac{d u}{dx} = const, \end{aligned}$$
(4)

where f is the viscous drag force exerted on the fluid per unit interface area.

Next we consider a sharp interface. To ensure the fluid occupies the same volume as in the smooth-interface case and the sharp-interface case, the sharp interface location (\(x_0\)) should be:

$$\begin{aligned}&x_0 = x_1 + \int _{x_1}^{x_2} \phi (x) dx. \end{aligned}$$
(5)

The governing equation and the boundary conditions are:

$$\begin{aligned}&\nabla \cdot ( \mu _{f} \nabla \textbf{u}^*) = 0, \end{aligned}$$
(6)
$$\begin{aligned}&u^*(x_1) = u_1, \;\; u^*(x_0) = 0, \end{aligned}$$
(7a)

where \(\textbf{u}^*\) is the velocity in the sharp-interface case. With the same assumptions, the viscous drag force from the sharp interface, per unit area, is:

$$\begin{aligned}&f = \mu _{f} \frac{u_1}{x_0 - x_1}. \end{aligned}$$
(7b)

The smooth interface and the sharp interface should provide the same viscous drag force, to ensure the momentum balance is accurately described. Thus, we let f in Eq. A4 and Eq. A8 be the same and combine them with Eq. A5:

$$\begin{aligned}&- \frac{d u}{dx} = \frac{\mu _f}{\mu _{eff}} \frac{u_1}{\int _{x_1}^{x_2} \phi (x) dx}. \end{aligned}$$
(7c)

Integrate both sides from \(x_1\) to \(x_2\):

$$\begin{aligned}&\int _{x_1}^{x_2} - \frac{d u}{dx} dx = \int _{x_1}^{x_2} \frac{\mu _{f}u_1}{\mu _{eff} \int _{x_1}^{x_2} \phi (x^*) dx^*} dx. \end{aligned}$$
(8a)

Substitute the boundary conditions in Eq. A1b:

$$\begin{aligned}&u_1 = \int _{x_1}^{x_2} \frac{\mu _{f}u_1}{\mu _{eff} \int _{x_1}^{x_2} \phi (x^*) dx^*} dx, \end{aligned}$$
(8b)
$$\begin{aligned}&\int _{x_1}^{x_2} \phi (x) dx = \int _{x_1}^{x_2} \frac{\mu _{f}}{\mu _{eff} } dx. \end{aligned}$$
(8c)

To ensure Eq. A12 is valid for arbitrary \(\phi (x)\), we have:

$$\begin{aligned}&\mu _{eff} = \frac{\mu _{f}}{\phi (x)}. \end{aligned}$$
(8d)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Z., Battiato, I. A mineral precipitation model based on the volume of fluid method. Comput Geosci (2024). https://doi.org/10.1007/s10596-024-10280-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10596-024-10280-3

Keywords

Navigation