Skip to main content
Log in

Conditional stochastic simulation of fluvial reservoirs using multi-scale concurrent generative adversarial networks

  • Original Paper
  • Published:
Computational Geosciences Aims and scope Submit manuscript

Abstract

To accurately grasp the comprehensive geological features of fluvial reservoirs, it is necessary to exploit a robust modelling approach to visualize and reproduce the realistic spatial distribution that exhibits apparent and implicit depositional trends of fluvial regions. The traditional geostatistical modelling methods using stochastic modelling fail to capture the complex features of geological reservoirs and therefore cannot reflect satisfactory realistic patterns. Generative adversarial network (GAN), as one of the mainstream generative models of deep learning, performs well in unsupervised learning tasks. The concurrent single image GAN (ConSinGAN) is one of the variants of GAN. Based on ConSinGAN, conditional concurrent single image GAN (CCSGAN) is proposed in this paper to perform conditional simulation of fluvial reservoirs, through which the output of the model can be constrained by conditional data. The results show that ConSinGAN, with the introduction of conditional data, not only preserves the model and parameters for future use but also improves the quality of the simulation results compared to other modeling methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availability

The data and code used to support this study are available from the corresponding author upon request.

References

  1. Keogh, K.J., Martinius, A.W., Osland, R.: The development of fluvial stochastic modelling in the Norwegian oil industry: A historical review, subsurface implementation and future directions. Sed. Geol. 249–268 (2007). https://doi.org/10.1016/j.sedgeo.2007.05.009

  2. Deutsch, C.V., Wang, L.: Hierarchical object-based stochastic modeling of fluvial reservoirs. Math. Geol. 28(7), 857–880 (1996). https://doi.org/10.1007/bf02066005

  3. Veldkamp, A., Baartman, J.E.M., Coulthard, T.J., Maddy, D., Schoorl, J.M., Storms, J.E.A., Temme, A.J.A.M., van Balen, R., van De Wiel, M.J., van Gorp, W., Viveen, W., Westaway, R., Whittaker, A.C.: Two decades of numerical modelling to understand long term fluvial archives: Advances and future perspectives. Q. Sci. Rev. 166, 177–187 (2017). https://doi.org/10.1016/j.quascirev.2016.10.002

  4. Cressie, N.: The origins of kriging. Math. Geol. 22, 239–252 (1990). https://doi.org/10.1007/bf00889887

  5. Montero, J.M., Colombera, L., Yan, N., Mountney, N.P.: A workflow for modelling fluvial meander-belt successions: Combining forward stratigraphic modelling and multi-point geostatistics. J Petrol Sci Eng (2021). https://doi.org/10.1016/j.petrol.2021.108411

    Article  Google Scholar 

  6. Strebelle, S.: Conditional Simulation of Complex Geological structures using multiple-point statistics. Math. Geol. 34, 1–21 (2002). https://doi.org/10.1023/a:1014009426274

  7. Renard, P., Straubhaar, J., Caers, J., Mariethoz, G.: Conditioning facies simulations with connectivity data. Math. Geosci. 43(8), 879–903 (2011). https://doi.org/10.1007/s11004-011-9363-4

  8. Mariethoz, G., Renard, P., Straubhaar, J.: Direct sampling method to perform multiple-point geostatistical simulations. Water Resour Res 46, W11536 (2010)

    Article  Google Scholar 

  9. Zhang, T., Switzer, P., Journel, A.: Filter-based classification of training image patterns for spatial Simulation. Math. Geol. 38, 63–80 (2006). https://doi.org/10.1007/s11004-005-9004-x

  10. Arpat, G.B., Caers, J.: Conditional simulation with patterns. Math. Geol. 39(2), 177–203 (2007). https://doi.org/10.1007/s11004-006-9075-3

  11. Tahmasebi, P., Hezarkhani, A., Sahimi, M.: Multiple-point geostatistical modeling based on the cross-correlation functions. Comput. GeoSci. 16(3), 779–797 (2012). https://doi.org/10.1007/s10596-012-9287-1

  12. Mahmud, K., Mariethoz, G., Caers, J., Tahmasebi, P., Baker, A.: Simulation of Earth textures by conditional image quilting. Water Resour. Res. 50(4), 3088–3107 (2014). https://doi.org/10.1002/2013wr015069

  13. Li, X., Mariethoz, G., Lu, D., Linde, N.: Patch-based iterative conditional geostatistical simulation using graph cuts. Water Resour. Res. 52(8), 6297–6320 (2016). https://doi.org/10.1002/2015wr018378

  14. Wu, J.: 4D Seismic and Multiple-point Pattern Data Integration Using Geostatistics. Ph.D. dissertation. Stanford University (2007)

  15. Jika, H.T., Onuoha, K.M., Dim, C.I.P.: Application of geostatistics in facies modeling of Reservoir-E, “Hatch Field” offshore Niger Delta Basin, Nigeria. J. Petroleum Explor. Prod. Technol. 10(2), 769–781 (2020). https://doi.org/10.1007/s13202-019-00788-1

  16. Azamifard, A., Ahmadi, M., Rashidi, F., Pourfard, M., Dabir, B.: QuiltEdge: novel geostatistical workflow for heterogeneous reservoirs with an innovative combination of multi-variable image quilting and edge property concept to model heterogeneity and flow barriers. J Petrol Sci Eng (2020). https://doi.org/10.1016/j.petrol.2020.107103

    Article  Google Scholar 

  17. Chugunova, T.L., Hu, L.Y.: Multiple-point simulations constrained by continuous auxiliary data. Math. Geosci. 40(2), 133–146 (2008). https://doi.org/10.1007/s11004-007-9142-4

  18. Wu, J., Zhang, T., Journel, A.: Fast FILTERSIM simulation with score-based distance. Math. Geosci. 40(7), 773–788 (2008). https://doi.org/10.1007/s11004-008-9157-5

  19. Mosser, L., Dubrule, O., Blunt, M.J.: Reconstruction of three-dimensional porous media using generative adversarial neural networks. Phys. Rev. E. 96(4), 043309 (2017). https://doi.org/10.1103/physreve.96.043309

  20. Nesvold, E., Mukerji, T.: Simulation of fluvial patterns with GANs trained on a data set of satellite imagery. Water Resour Res (2021). https://doi.org/10.1029/2019wr025787

    Article  Google Scholar 

  21. Chan, S., Elsheikh, A.H.: Parametrization and generation of geological models with generative adversarial networks. (2017). https://doi.org/10.48550/arXiv.1708.01810

  22. Hinz, T., Fisher, M., Wang, O., Wermter, S.: Improved techniques for training single-image GANs. 2021 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 1299–1308 (2021). https://doi.org/10.1109/WACV48630.2021.00134

  23. Mirza, M., Osindero, S.: Conditional generative adversarial nets. (2014). https://doi.org/10.48550/arXiv.1411.1784

  24. Dupont, E., Zhang, T.F., Tilke, P., Zhu, L.-C., Liang, L., Bailey, W.: Generating geologically realistic 3D reservoir facies models using deep learning of sedimentary architecture with generative adversarial networks. Pet. Sci. 541–549 (2019). https://doi.org/10.1007/s12182-019-0328-4

  25. Chan, S., Elsheikh, A.H.: Parametric generation of conditional geological realizations using generative neural networks. Comput. GeoSci. 925–952 (2019). https://doi.org/10.1007/s10596-019-09850-7

  26. Song, S., Mukerji, T., Hou, J.: GANSim: Conditional Facies Simulation Using an Improved Progressive Growing of Generative Adversarial Networks (GANs). Math. Geosci. 1413–1444 (2021). https://doi.org/10.1007/s11004-021-09934-0

  27. Goodfellow, I.J., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., Bengio, Y.: Generative adversarial networks. (2014). https://doi.org/10.48550/arXiv.1406.2661

  28. Shaham, T.R., Dekel, T., Michaeli, T.: SinGAN: learning a generative model from a single natural image. 2019 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 4569–4579 (2019). https://doi.org/10.1109/ICCV.2019.00467

  29. Karras, T., Aila, T., Laine, S., Lehtinen, J.: Progressive growing of GANs for improved quality, stability, and variation. (2017). https://doi.org/10.48550/arXiv.1710.10196

  30. Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.: Improved training of Wasserstein GANs. (2017). https://doi.org/10.48550/arXiv.1704.00028

  31. Fuglede, B., Topsoe, F.: Jensen-Shannon divergence and Hilbert space embedding. International Symposium onInformation Theory, 2004. ISIT 2004. Proceedings. 31 (2004). https://doi.org/10.1109/ISIT.2004.1365067

  32. Cui, S.B., Jiang, Y., Ieee.: Effective Lipschitz constraint enforcement for Wasserstein GAN training. 2nd IEEE International Conference on Computational Intelligence and Applications (ICCIA), pp. 74–78. N China Univ Technol, Beijing (2017)

  33. Honarkhah, M., Caers, J.: Stochastic Simulation of patterns using distance-based pattern modeling. Math Geosci 42(5), 487–517 (2010). https://doi.org/10.1007/s11004-010-9276-7

    Article  Google Scholar 

  34. Liu, Y.: Using the Snesim program for multiple-point statistical simulation. Comput Geosci 32(10), 1544–1563 (2006). https://doi.org/10.1016/j.cageo.2006.02.008

    Article  Google Scholar 

  35. Mahmud, K., Mariethoz, G., Caers, J., Tahmasebi, P., Baker, A.: Simulation of earth textures by conditional image quilting. Water Resour Res 50(4), 3088–3107 (2014)

    Article  Google Scholar 

  36. Mariethoz, G., Renard, P.: Reconstruction of incomplete data sets or images using direct sampling. Math. Geosci. 42(3), 245–268 (2010). https://doi.org/10.1007/s11004-010-9270-0

    Article  Google Scholar 

  37. Strebelle, S.B.: Sequential simulation drawing structures from training images. Ph.D. dissertation. Stanford University. (2000)

  38. Jha, S.K., Comunian, A., Mariethoz, G., Kelly, B.F.: Parameterization of training images for aquifer 3-D facies modeling integrating geological interpretations and statistical inference. Water Resour Res 50(10), 7731–7749 (2014)

    Article  Google Scholar 

Download references

Funding

This work is supported by the National Natural Science Foundation of China (Nos. 41672114, 41702148) and Key research base of Humanities and Social Sciences in Guangdong Province–Open Fund Project of Local Government Development Research Institute of Shantou University (07422002).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Anqin Zhang or Yi Du.

Ethics declarations

Conflicts of interest/Competing interests

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, T., Yin, M., Bai, H. et al. Conditional stochastic simulation of fluvial reservoirs using multi-scale concurrent generative adversarial networks. Comput Geosci (2024). https://doi.org/10.1007/s10596-024-10279-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10596-024-10279-w

Keywords

Navigation