Skip to main content
Log in

Power law slip boundary condition for Navier-Stokes equations: Discontinuous Galerkin schemes

  • Original Paper
  • Published:
Computational Geosciences Aims and scope Submit manuscript

Abstract

This study deals with the numerical analysis of several discontinuous Galerkin (DG) methods for the resolution of the Navier-Stokes equations with power law slip boundary condition. The physical context corresponding to this problem is the description of a flow when a position and the direction slip boundary condition is taken into consideration. The main goal in this work is to examine the solvability, convergence of several DG methods, and to discuss their practical resolution by means of fixed point iterative algorithm. Theoretical findings are backed up by solid computational results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

Not applicable

References

  1. Stokes equations with penalized slip boundary conditions: Dione, I., Tibirna, C., & Urquiza. J.M. Int. J. Comput. Fluid Dyn. 27, 283–296 (2013)

    MathSciNet  Google Scholar 

  2. Dione. I.,  & Urquiza. J.M.: Penalty finite element approximation of Stokes equations with slip boundary conditions. Numer. Math. 129, 587–610, (2015)

  3. Zhou, G., Oikawav, I., Kashiwabara, T.: The Crouzeix-Raviart element for the Stokes equations with the slip boundary condition on a curved boundary. J. Comput. Appl. Math. 383, 113–123 (2020)

    MathSciNet  Google Scholar 

  4. Busse. A & Sandham. N.D. Influence of an anisotropic slip-length boundary condition on turbulent channel flow. Phys. Fluids. 24, 055111. (2012). https://doi.org/10.1063/1.4719780

  5. Charrault. E, Lee. T & Neto. C. Interfacial slip on rough, patterned and soft surfaces: a review of experiments and simulations. Adv. Colloid Interface Sci. vol. 210, 21–38, (2014)

  6. Cooper. A.J, Harris. J.H, Garrett. S.Jözkan. M  & Thomas. P.J. The effect of anisotropic and isotropic roughness on the convective stability of the rotating disk boundary layer. Phys. Fluids. 27, 014107. (2015). https://doi.org/10.1063/1.4906091

  7. Fouchet-Incaux, J.: Artificial boundaries and formulations for the incompressible Navier-Stokes equations: applications to air and blood flows. SeMA J. 64, 1–40 (2014)

    Article  MathSciNet  Google Scholar 

  8. Rajagopal, K.R.: On the implicit constitutive theories. J. Fluid Mech. 550, 243–249 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  9. Le Roux. C. Flows of incompressible viscous liquids with anisotropic wall slip. J. Math. Anal. Appl. 465, 723–730, (2018)

  10. Le Roux. C. On the Navier-Stokes equations with anisotrpic wall slip conditions. Appl. Math. (2002). https://doi.org/10.21136/AM.2021.0079-21

  11. Geymonat. G, Krasucki. F, Marini. D  & Vidrascu. M.:A domain decomposition method for bonded structures. Math. Models Methods Appl. Sci. 8, No 8, 1387–1402, (1998)

  12. Bodart. O, Chorfi. A  & Koko. J.A fictitious domain decomposition method for a nonlinear bonded structure. Math. Comput. Simul., 189, No 7, 114–125, (2021)

  13. Bresch, D., Koko, J.: An optimization-based domain decomposition method for nonlinear wall laws in coupled systems. Math. Models Methods Appl. Sci. 14(7), 1085–1101 (2004)

    Article  MathSciNet  Google Scholar 

  14. Djoko, J.K., Koko, J., Mbehou, M., Sayah, T.: Stokes and Navier-Stokes equations under power law slip boundary condition: Numerical Analysis. Comput. Math. Appl. 128, 198–213 (2022)

    Article  MathSciNet  Google Scholar 

  15. Brezis, H.: Functional Analysis. Springer, Sobolev Spaces and partial differential equations (2010)

    Google Scholar 

  16. Arnold, D.N., Brezzi, F., Cockburn, B., Marini, L.D.: Unified analyis of discontious Galerkin methods for elliptic problems. SIAM J. Numer. Anal. 39, 1749–1779 (2002)

    Article  Google Scholar 

  17. Arnold. D.N.: An interior penalty finite element method with discontinuous elements. Siam J. Numer. Anal. 19, No 4, 642–760, (1982)

  18. Riviere. B., Wheeler. M.F.,  & Girault. V.: Improved energy estimates for interior penalty constrained and discontinuous Galerkin method for elliptic problems. Part 1. Comput. Geosci. 3, No 3-4, 337–360, (1999)

  19. Dawson, C., Sun, S., Wheeler, M.F.: Compatible algorithms for coupled flow and transport. Comput. Meth. Appl. Mech. Engrg. 193, 2565–2580 (2004)

    Article  MathSciNet  Google Scholar 

  20. Girault. V., Riviere. B.,  & Wheeler. M.F.: A discontinuous Galerkin method with non overlapping domain decomposition for the Stokes and Navier-Stokes problems. Math. Comp. 74, 53–84, (2005)

  21. Kaya S, Rivière B. A Discontinuous Subgrid Eddy Viscosity Method for the Time-Dependent Navier–Stokes Equations. SIAM Journal on Numerical Analysis. 43(4), 1572–95 (2005)

  22. Sara F. N., Kuckuk. S., Aizinger. V., Zint. D.,Grosso. R.,  & Köstler. H.: Quadrature-free discontinuous Galerkin method with code generation features for shallow water equations on automatically generated block-structured meshes. Adv. Water. Resour. 138, 103552. (2020)

  23. Marchandise. E., Remacle J.F.,  & Chevaugeon. N.: A quadrature-free discontinuous Galerkin method for the level set equation. J. Comput. Phys., 212, No1, 338–357, (2006)

  24. Girault. V.,  & Raviart. P.A.: Finite Element Methods for Navier-Stokes Equations: Theory and Algorithms. Springer-Verlag, Berlin, Heidelberg, New-York, Tokyo (1986)

  25. Boffi. D., Brezzi. F., Fortin. M.: Mixed Finite Element Methods and Applications. Springer Series in Computational Mathematics, Springer Verlag Berlin (2013)

  26. Raviart. P.A  & Thomas J.M.: A mixed finite element method for second order elliptic problems, in Mathematical Aspects of Finite Element Methods, Lecture Notes in Math. 606, Springer, Berlin, (1975)

  27. Dione, I.: Optimal error estimates of the unilateral contact problem in curved and smooth boundary domain by the penalty method. IMA J. Numer. Anal. 40(1), 729–763 (2020)

    Article  MathSciNet  Google Scholar 

  28. Bassi F., Rebay S., Mariotti G.,Pedinotti S.,  & Savini M: A high order accurate discontinuous finite element method for inviscid and viscous turbomachinery flows,In Decuypere R, Dibelius G. (eds) proceedings of the 2nd European Conference on Turbomachinery, Fluid Dynamics and thermodynamics, 99–108, Technologisch Instituut, Antwerrpen, (1997)

  29. Local discontinuous Galerkin methods for the Stokes system: Cockburn B., Kanschat G., Schötzau D., & Schwab C. SIAM J. Numer. Anal. 40, 319–342 (2002)

    MathSciNet  Google Scholar 

  30. Cockburn B., Kanschat G.,  & Schötzau D: A locally conservative LDG method for the incompressible Navier-Stokes equations. Math. Comput. 74, 1067–1095, (2004)

  31. Evans L.C,  & Gariepy R.F.: Measure Theory and Fine Property of Functions. CRC press, (1992)

  32. Glowinski. R.,  & Marrocco. A.: Sur l approximation par elements finis d ordre un et la resolution par penalisation-dualite d une classe de problemes de Dirirchlet nonlineaires. Rairo. serie rouge–Analyse numerique, 9, 41–76, (1975)

  33. Sandri. D.A.:Sur l approximation des ecoulements numeriques quasi-Newtoniens dont la viscosite obeit a la loi de puissance ou de Carreau. M2AN. 27, 131–155, (1993)

  34. Brenner, S.C.: Korn’s inequalities for piecewise \(H^1\) vector fields. Math. Comp. 73, 1067–1087 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  35. Brenner. S.C.,  & Ridgway Scott.L. The Mathematical theory of finite element methods. Springer, third edition (2010)

  36. Schotzau. D , Schwab. C  & Toselli. A. Mixed hp-DGFEM for incompressible flows. SIAM J. Numer. Anal. 40, 2171–2194, (2002)

  37. Scott, L.R., Zhang, S.: Finite element interpolation of non-smooth functions satisfying boundary conditions. Math. Comp. 54, 483–493 (1990)

    Article  ADS  MathSciNet  Google Scholar 

  38. Girault. V.,  & Wheeler. M.F.: Numerical discretization of a Darcy-Forchheimer model. Numer. Math. 110, 161–198, (2008)

  39. Hecht. F.: New development in FreeFem++. J. Numer. Math. 20, 251–266, (2012)

  40. Glowinski. R., Guidoboni. G.,  & Pan. T.W.: Wall-driven incompressible viscous flow in a two dimensional semi-circular cavity. J. Comput. Physics. 216, 76–91, (2006)

  41. Pan. T.W., Hao. J.,  & Glowinski. R.: On the simulation of a time dependent cavity flow of an Oldroyd-B fluid. Int. J. Numer. Fluids. 60, 791–808, (2009)

Download references

Acknowledgements

The authors thank the two referees for their constructive remarks and comments.

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. K. Djoko.

Ethics declarations

Conflicts of interest

The authors declare no conflict of interest

Informed Consent

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Djoko, J.K., Konlack, V.S. & Sayah, T. Power law slip boundary condition for Navier-Stokes equations: Discontinuous Galerkin schemes. Comput Geosci 28, 107–127 (2024). https://doi.org/10.1007/s10596-023-10265-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10596-023-10265-8

Keywords

Mathematics Subject Classification (2010)

Navigation