Skip to main content

Advertisement

Log in

Neural spline flow multi-constraint NURBS method for three-dimensional automatic geological modeling with multiple constraints

  • Original Paper
  • Published:
Computational Geosciences Aims and scope Submit manuscript

Abstract

The strike and the dip angle are vital for describing the geometry of the rock formations. However, in the interpolation and geological modeling, only the coordinates are considered; the strike and the dip angle are ignored. To this end, the neural spline flow (NSF) multi-constraint non-uniform rational B-splines (McNURBS) method is proposed in this study. Any complex high-dimensional joint distribution can be learned using the deep generative model, NSF; thus, the NSF model was used to perform the exact maximum likelihood estimation and joint sampling of three-dimensional (3D) geological point coordinates, strike, and dip angle, overcoming the shortcomings of conventional statistical models, which are difficult to extend to high-dimensional problems. In addition, the conventional single-constraint NURBS modeling method based on geological point coordinates was improved to obtain the McNURBS modeling method, which considers the geological point coordinates, strike, and dip angle during the modeling process. The practical application results show that by using the proposed method, a 3D geological model can be flexibly and automatically established considering both geological point coordinates and strike and dip angle constraints. Moreover, the fitting relative error (RE) of the proposed method was reduced by 52.4% compared to the conventional NURBS method. This study provides a convenient and efficient means to automatically build a reliable 3D geological model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Høyer, A.-S., Klint, K.E.S., Fiandaca, G., Maurya, P.K., Christiansen, A.V., Balbarini, N., Bjerg, P.L., Hansen, T.B., Møller, I.: Development of a high-resolution 3D geological model for landfill leachate risk assessment. Eng. Geol 249, 45–59 (2019). https://doi.org/10.1016/j.enggeo.2018.12.015

    Article  Google Scholar 

  2. Lyu, M., Ren, B., Wu, B., Tong, D., Ge, S., Han, S.: A parametric 3D geological modeling method considering stratigraphic interface topology optimization and coding expert knowledge. Eng. Geol 293, 106300 (2021). https://doi.org/10.1016/j.enggeo.2021.106300

    Article  Google Scholar 

  3. Zhang, Y., Zhong, D., Wu, B., Guan, T., Yue, P., Wu, H.: 3D parametric modeling of complex geological structures for geotechnical engineering of dam foundation based on T-Splines. Comput Aided Civ. Infrastruct. Eng 33(7), 545–570 (2018). https://doi.org/10.1111/mice.12343

    Article  Google Scholar 

  4. Silva, T.M.D., Villalobos, R.S., Cardona, Y.A., Barreto, A., Jr, Pesco, S.: Well-testing based turbidite lobes modeling using the ensemble smoother with multiple data assimilation. Comput. GeoSci 25, 1139–1157 (2021). https://doi.org/10.1007/s10596-021-10045-2

    Article  Google Scholar 

  5. Zhong, D., Wang, L., Lin, B., Jia, M.: Implicit modeling of complex orebody with constraints of geological rules. Trans. Nonferrous Met. Soc. China 29(11), 2392–2399 (2019). https://doi.org/10.1016/S1003-6326(19)65145-9

    Article  Google Scholar 

  6. Zhong, D., Wang, Z., Zhang, Y., Shi, M.: Fluid-solid coupling based on a refined fractured rock model and stochastic parameters: A case study of the anti-sliding stability analysis of the Xiangjiaba Project. Rock Mech. Rock Eng 51, 2555–2567 (2018). https://doi.org/10.1007/s00603-017-1367-z

    Article  Google Scholar 

  7. Yekta, A., Salinas, P., Hajirezaie, S., Amooie, M.A., Pain, C.C., Jackson, M.D., Jacquemyn, C., Soltanian, M.R.: Reactive transport modeling in heterogeneous porous media with dynamic mesh optimization. Comput. GeoSci 25, 357–372 (2021). https://doi.org/10.1007/s10596-020-10009-y

    Article  Google Scholar 

  8. Borio, A., Fumagalli, A., Scialo, S.: Comparison of the response to geometrical complexity of methods for unstationary simulations in discrete fracture networks with conforming, polygonal, and non-matching grids. Comput. GeoSci 25, 143–162 (2021). https://doi.org/10.1007/s10596-020-09996-9

    Article  Google Scholar 

  9. Sedaghat, M.H., Azizmohammadi, S.: Dynamic wettability alteration in naturally fractured rocks. Comput. GeoSci 24, 581–591 (2020). https://doi.org/10.1007/s10596-019-09843-6

    Article  Google Scholar 

  10. Srinivasan, S., Karra, S., Hyman, J., Viswanathan, H., Srinivasan, G.: Model reduction for fractured porous media: A machine learning approach for identifying main flow pathways. Comput. GeoSci 23, 617–629 (2019). https://doi.org/10.1007/s10596-019-9811-7

    Article  Google Scholar 

  11. Zhou, X., Xiao, N.: A novel 3D geometrical reconstruction model for porous rocks. Eng. Geol 228, 371–384 (2017). https://doi.org/10.1016/j.enggeo.2017.08.021

    Article  Google Scholar 

  12. Shi, J., Zhang, W., Wang, W., Sun, Y., Xu, C., Zhu, H., Sun, Z.: Randomly generating three-dimensional realistic schistous sand particles using deep learning: Variational autoencoder implementation. Eng. Geol 291, 106235 (2021). https://doi.org/10.1016/j.enggeo.2021.106235

    Article  Google Scholar 

  13. Prinds, C., Petersen, R.J., Greve, M.H., Iversen, B.V.: Three-dimensional voxel geological model of a riparian lowland and surrounding catchment using a multi-geophysical approach. J. Appl. Geophys 174, 103965 (2020). https://doi.org/10.1016/j.jappgeo.2020.103965

    Article  Google Scholar 

  14. Høyer, A.-S., Jørgensen, F., Sandersen, P.B.E., Viezzoli, A., Møller, I.: 3D geological modelling of a complex buried-valley network delineated from borehole and AEM data. J. Appl. Geophys 122, 94–102 (2015). https://doi.org/10.1016/j.jappgeo.2015.09.004

    Article  Google Scholar 

  15. Chen, Q., Liu, G., Ma, X., Li, X., He, Z.: 3D stochastic modeling framework for quaternary sediments using multiple-point statistics: A case study in Minjiang Estuary area, Southeast China. Comput. Geosci 136, 104404 (2020). https://doi.org/10.1016/j.cageo.2019.104404

    Article  Google Scholar 

  16. Cui, Z., Chen, Q., Liu, G., Ma, X., Que, X.: Multiple-point geostatistical simulation based on conditional conduction probability. Stoch. Env. Res. Risk Assess 35, 1355–1368 (2021). https://doi.org/10.1007/s00477-020-01944-4

    Article  Google Scholar 

  17. de Kemp, E.A., Schetselaar, E.M., Hillier, M.J., Lydon, J.W., Ransom, P.W.: Assessing the workflow for regional-scale 3D geologic modeling: An example from the Sullivan time horizon, Purcell Anticlinorium East Kootenay region, southeastern British Columbia. Interpretation 4(3), SM33–SM50 (2016). https://doi.org/10.1190/INT-2015-0191.1

    Article  Google Scholar 

  18. Jacquemyn, C., Jackson, M.D., Hampson, G.J.: Surface-based geological reservoir modelling using grid-free NURBS curves and surfaces. Math. Geosci 51, 1–28 (2019). https://doi.org/10.1007/s11004-018-9764-8

    Article  Google Scholar 

  19. de Kemp, E.A.: Visualization of complex geological structures using 3-D Bézier construction tools. Comput. Geosci 25, 581–597 (1999). https://doi.org/10.1016/S0098-3004(98)00159-9

    Article  Google Scholar 

  20. de Kemp, E.A.: 3-D visualization of structural field data: Examples from the Archean Caopatina formation, Abitibi greenstone belt, Québec, Canada. Comput. Geosci 26, 509–530 (2020). https://doi.org/10.1016/S0098-3004(99)00142-9

    Article  Google Scholar 

  21. Titus, Z., Heaney, C., Jacquemyn, C., Salinas, P., Jackson, M.D., Pain, C.: Conditioning surface-based geological models to well data using artificial neural networks. Comput. GeoSci (2021). https://doi.org/10.1007/s10596-021-10088-5

    Article  Google Scholar 

  22. Gribov, A., Krivoruchko, K.: Local polynomials for data detrending and interpolation in the presence of barriers. Stoch. Env. Res. Risk Assess. 25(8) (2011). https://doi.org/10.1007/s00477-011-0488-2

  23. Albuquerque, D.F., Franca, G.S., Moreira, L.P., Assumpção, M., Bianchi, M., VieiraBarros, L., Quispe, C.C., Oliveira, M.E.: Crustal structure of the amazonian Craton and adjacent provinces in Brazil. J. S. Am. Earth Sci 79, 431–442 (2017). https://doi.org/10.1016/j.jsames.2017.08.019

    Article  Google Scholar 

  24. Popovs, K., Saks, T., Jātnieks, J.: A comprehensive approach to the 3D geological modelling of sedimentary basins: Example of Latvia, the central part of the Baltic Basin. Est. J. Earth Sci 64(2), 173–188 (2015). https://doi.org/10.3176/earth.2015.25

    Article  Google Scholar 

  25. Webster, R., Oliver, M.A.: Geostatistics for environmental scientists, 2nd Edition. John Wiley & Sons Ltd, England (2007). https://doi.org/10.1002/9780470517277

  26. Mallet, J.L.: Discrete smooth interpolation in geometric modeling. Comput. Aided Des 24(4), 178–190 (1992). https://doi.org/10.1016/0010-4485(92)90054-E

    Article  Google Scholar 

  27. Mallet, J.L.: Discrete modeling for nature objects. Math. Geol 29(2), 199–218 (1998). https://doi.org/10.1007/BF02769628

    Article  Google Scholar 

  28. Manchuk, J.G., Deutsch, C.V.: Boundary modeling with moving least squares. Comput. Geosci 126, 96–106 (2019). https://doi.org/10.1016/j.cageo.2019.02.006

    Article  Google Scholar 

  29. Caumon, G., Gray, G., Antoine, C., Titeux, M.O., Mexico, N.E.: IEEE Trans. Geosci. Remote Sens 51(3), 1613–1621 (2013). https://doi.org/10.1109/TGRS.2012.2207727

    Article  Google Scholar 

  30. Hillier, M.J., Schetselaar, E.M., de Kemp, E.A., Perron, G.: Three-dimensional modelling of geological surfaces using generalized interpolation with radial basis functions. Math. Geosci 46, 931–953 (2014). https://doi.org/10.1007/s11004-014-9540-3

    Article  Google Scholar 

  31. Guo, J., Wu, L., Zhou, W., Li, C., Li, F.: Section-constrained local geological interface dynamic updating method based on the HRBF surface. J. Struct. Geol 107, 64–72 (2018). https://doi.org/10.1016/j.jsg.2017.11.017

    Article  Google Scholar 

  32. Guo, J., Wang, J., Wu, L., Liu, C., Li, C., Li, F., Lin, M., Jessell, M.W., Li, P., Dai, X., Tang, J.: Explicit-implicit-integrated 3-D geological modelling approach: A case study of the Xianyan demolition volcano (Fujian, China). Tectonophysics 795, 228648 (2020). https://doi.org/10.1016/j.tecto.2020.228648

    Article  Google Scholar 

  33. Guo, J., Wang, X., Wang, J., Dai, X., Wu, L., Li, C., Li, F., Liu, S., Jessell, M.W.: Three-dimensional geological modeling and spatial analysis from geotechnical borehole data using an implicit surface and marching tetrahedra algorithm. Eng. Geol 284, 106047 (2021). https://doi.org/10.1016/j.enggeo.2021.106047

    Article  Google Scholar 

  34. Liu, H., Chen, S., Hou, M., He, L.: Improved inverse distance weighting method application considering spatial autocorrelation in 3D geological modeling. Earth Sci. Inf 13, 619–632 (2020). https://doi.org/10.1007/s12145-019-00436-6

    Article  Google Scholar 

  35. Liu, Z., Zhang, Z., Zhou, C., Ming, W., Du, Z.: An adaptive inverse-distance weighting interpolation method considering spatial differentiation in 3D geological modeling. Geosciences 11, 51 (2021). https://doi.org/10.3390/geosciences11020051

    Article  Google Scholar 

  36. Sibson, R.: A brief description of natural neighbor interpolation. Wiley, New York (1981)

    Google Scholar 

  37. Franke, R.: Scattered Data Interpolation: Test of Some Methods. Mathematics of Computation. 38, 181–200 (1982). (1982). https://doi.org/10.2307/2007474

  38. Pavičić, I., Dragičević, I., Ivkić, I.: High-resolution 3D geological model of the bauxite-bearing area Crvene Stijene (Jajce, Bosnia and Herzegovina) and its application in ongoing research and mining. Geol. Q. 62(1) (2018). https://doi.org/10.7306/gq.1396

  39. Viswanathan, R., Jagan, J., Samui, P., Porchelvan, P.: Spatial variability of rock depth using simple kriging, ordinary Kriglng, RVM and MPMR. Geotech. Geol. Eng 33(1), 69–78 (2015). https://doi.org/10.1007/s10706-014-9823-y

    Article  Google Scholar 

  40. Kiš, I.M.: Comparison of ordinary and universal kriging interpolation techniques on a depth variable (a case of linear spatial trend), case study of the Šandrovac Field. Rudarsko Geolosko Naftni Zbornik 31(2), 41–58 (2016). https://doi.org/10.17794/rgn.2016.2.4

    Article  Google Scholar 

  41. Kiš, I.M.: Contribution to the application and terminology of geostatistical mapping methods in Croatia - Universal Kriging. Rudarsko Geolosko Naftni Zbornik 32(4), 31–35 (2017). https://doi.org/10.17794/rgn.2017.4.3

    Article  Google Scholar 

  42. Thakur, M., Samanta, B., Chakravarty, D.: A non-stationary spatial approach to disjunctive kriging in reserve estimation. Spat. Stat 17, 131–160 (2016). https://doi.org/10.1016/j.spasta.2016.06.001

    Article  Google Scholar 

  43. Ortiz, J.M., Emery, X.: Geostatistical estimation of mineral resources with soft geological boundaries: A comparative study. J. South Afr. Inst. Min. Metall 106(8), 577–584 (2006)

    Google Scholar 

  44. Webber, T., Costa, J., Salvadoretti, P.: Using borehole geophysical data as soft information in indicator kriging for coal quality estimation. Int. J. Coal Geol 112, 67–75 (2013). https://doi.org/10.1016/j.coal.2012.11.005

    Article  Google Scholar 

  45. Oussidi, A., Elhassouny, A.: Deep generative models: Survey. International Conference on Intelligent Systems and Computer Vision (ISCV) (2018). https://doi.org/10.1109/ISACV.2018.8354080

  46. Turhan, C.G., Bilge, H.S.: Recent trends in deep generative models: a Review. 3rd International Conference on Computer Science and Engineering (UBMK) (2018). https://doi.org/10.1109/UBMK.2018.8566353

  47. Papamakarios, G., Nalisnick, E., Rezende, D.J., Mohamed, S., Lakshminarayanan, B.: Normalizing flows for probabilistic modeling and inference arXiv: 1912.02762 (2019)

  48. Kobyzev, I., Prince, S.J.D., Brubaker, M.A.: Normalizing flows: An introduction and review of current methods. IEEE Trans. Pattern Anal. Mach. Intell (2019). https://doi.org/10.1109/TPAMI.2020.2992934

    Article  Google Scholar 

  49. Kingma, D.P., Welling, M.: Auto-encoding variational Bayes. arXiv:1312.6114 (2014)

  50. Goodfellow, I.J., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozairy, S., Courville, A., Bengio, Y.: Generative adversarial networks. Adv. Neural. Inf. Process. Syst. 3(11) (2014). https://doi.org/10.1145/3422622

  51. Dinh, L., Krueger, D., Bengio, Y.: NICE: Non-linear independent components estimation arXiv:1410.8516 (2015)

  52. Dinh, L., Sohl-Dickstein, J., Bengio, S.: Density estimation using Real NVP. arXiv:1605.08803 (2017)

  53. Kingma, D.P., Dhariwal, P.: Glow: Generative flow with invertible 1x1 convolutions. arXiv:1807.03039 (2018)

  54. Durkan, C., Bekasov, A., Murray, I., Papamakarios, G.: Neural spline flows. arXiv:1906.04032 (2019)

  55. Piegl, L., Tiller, W.: The NURBS Book, 2nd edn. Springer, Berlin Heidelberg (1997)

    Book  Google Scholar 

  56. Florez, H., Manzanilla-Morillo, R., Florez, J., et al.: Spline-based reservoir’s geometry reconstruction and mesh generation for coupled flow and mechanics simulation. Comput. Geosci 18, 949–967 (2014). https://doi.org/10.1007/s10596-014-9438-7

    Article  Google Scholar 

  57. Farin, G.: From projective geometry to practical use. AK Peters, Natick (1999)

    Google Scholar 

  58. Myers, J.L., Well, A.D.: Research design and statistical analysis, 2nd edn. Lawrence Erlbaum (2003)

  59. Arjovsky, M., Chintala, S., Bottou, L., Wasserstein, G.A.N.: arXiv:1701.07875. (2017)

Download references

Acknowledgements

This research was funded by the Yalong River Joint Funds of the National Natural Science Foundation of China (U1965207) and National Natural Science Foundation of China (Grant No. 51779169).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bingyu Ren.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix 1

Equation (8) can be expanded as Eq. (A1), where the unknown variables are n + 1 control points {Pi}; {Ni, p(t)} is calculated using the pseudo-code presented below. The value of __tk is calculated using Eq. (A2), and d is the total length of the polyline formed by {Qk} (Eq. (A3)). The knot vector U={t0, t1,…, tm } using for calculating {Ni, p(t)} can be obtained by Eq. (A4).

$$\left[ {\begin{array}{*{20}{c}} {\text{1}}&{}&{}&{}&{}&{}&{}&{}&{} \\ {{N_{0,3}}\left( {\overline {{{t_1}}} } \right)}&{{N_{1,3}}\left( {\overline {{{t_1}}} } \right)}&{{N_{2,3}}\left( {\overline {{{t_1}}} } \right)}&{{N_{{\text{3}},3}}\left( {\overline {{{t_1}}} } \right)}&{}&{}&{}&{}&{} \\ {{N_{0,3}}\left( {\overline {{{t_{\text{2}}}}} } \right)}&{{N_{1,3}}\left( {\overline {{{t_{\text{2}}}}} } \right)}&{{N_{2,3}}\left( {\overline {{{t_{\text{2}}}}} } \right)}&{{N_{3,3}}\left( {\overline {{{t_{\text{2}}}}} } \right)}&{}&{}&{}&{}&{} \\ {}&{{N_{1,3}}\left( {\overline {{{t_{\text{3}}}}} } \right)}&{{N_{2,3}}\left( {\overline {{{t_{\text{3}}}}} } \right)}&{{N_{3,3}}\left( {\overline {{{t_{\text{3}}}}} } \right)}&{{N_{{\text{4}},3}}\left( {\overline {{{t_{\text{3}}}}} } \right)}&{}&{}&{}&{} \\ {}&{}&{}&{}& \vdots &{}&{}&{}&{} \\ {}&{}&{}&{}&{{N_{n - {\text{4}},3}}\left( {\overline {{{t_{n - {\text{3}}}}}} } \right)}&{{N_{n - {\text{3}},3}}\left( {\overline {{{t_{n - {\text{3}}}}}} } \right)}&{{N_{n - {\text{2}},3}}\left( {\overline {{{t_{n - {\text{3}}}}}} } \right)}&{{N_{n - {\text{1}},3}}\left( {\overline {{{t_{n - {\text{3}}}}}} } \right)}&{} \\ {}&{}&{}&{}&{}&{{N_{n - {\text{3}},3}}\left( {\overline {{{t_{n - {\text{2}}}}}} } \right)}&{{N_{n - {\text{2}},3}}\left( {\overline {{{t_{n - {\text{2}}}}}} } \right)}&{{N_{n - {\text{1}},3}}\left( {\overline {{{t_{n - {\text{2}}}}}} } \right)}&{{N_{n,3}}\left( {\overline {{{t_{n - {\text{2}}}}}} } \right)} \\ {}&{}&{}&{}&{}&{{N_{n - {\text{3}},3}}\left( {\overline {{{t_{n - {\text{1}}}}}} } \right)}&{{N_{n - {\text{2}},3}}\left( {\overline {{{t_{n - {\text{1}}}}}} } \right)}&{{N_{n - {\text{1}},3}}\left( {\overline {{{t_{n - {\text{1}}}}}} } \right)}&{{N_{n,3}}\left( {\overline {{{t_{n - {\text{1}}}}}} } \right)} \\ {}&{}&{}&{}&{}&{}&{}&{}&{\text{1}} \end{array}} \right]\left[ {\begin{array}{*{20}{c}} {{{\mathbf{P}}_{\text{0}}}} \\ {{{\mathbf{P}}_{\text{1}}}} \\ {{{\mathbf{P}}_{\text{2}}}} \\ {{{\mathbf{P}}_{\text{3}}}} \\ \vdots \\ {{{\mathbf{P}}_{n - {\text{3}}}}} \\ {{{\mathbf{P}}_{n - {\text{2}}}}} \\ {{{\mathbf{P}}_{n - 1}}} \\ {{{\mathbf{P}}_n}} \end{array}} \right]{\text{=}}\left[ {\begin{array}{*{20}{c}} {{Q_0}} \\ {{Q_{\text{1}}}} \\ {{Q_{\text{2}}}} \\ {{Q_{\text{3}}}} \\ \vdots \\ {{Q_{n - {\text{3}}}}} \\ {{Q_{n - {\text{2}}}}} \\ {{Q_{n - 1}}} \\ {{Q_n}} \end{array}} \right]$$
(A1)
$$\left\{ \begin{gathered} \overline {{{t_{\text{0}}}}} =0 \hfill \\ \overline {{{t_k}}} =\overline {{{t_{k - 1}}}} +\frac{{\left| {{Q_i} - {Q_{i - 1}}} \right|}}{d},k=1,2, \cdots ,n - 1 \hfill \\ \overline {{{t_n}}} =1 \hfill \\ \end{gathered} \right.$$
(A2)
$$d=\sum\nolimits_{{i=1}}^{n} {\left| {{Q_i} - {Q_{i - 1}}} \right|}$$
(A3)
$$\left\{ \begin{gathered} {t_{\text{0}}}={t_{\text{1}}}={t_{\text{2}}}={t_{\text{3}}}=0 \hfill \\ {t_{j+3}}=\frac{1}{3}\sum\nolimits_{{i=j}}^{{j+2}} {\overline {{{t_i}}} } ,j=1,2, \cdots ,n - 3 \hfill \\ {t_{m - 3}}={t_{m - 2}}={t_{m - 1}}={t_m}=1 \hfill \\ \end{gathered} \right.$$
(A4)

The Pseudo-code for computing the B-spline basis function is cited from the literature [55].

Appendix 2

The (n + 1) equations representing Qk and Vk are shown in Eqs. (A6, A7).

$${Q_k}=C\left( {\overline {{{t_k}}} } \right)=\sum\nolimits_{{i=0}}^{{2n+{\text{1}}}} {{N_{i,p}}\left( {\overline {{{t_k}}} } \right){{\mathbf{P}}_i}}.$$
(A6)
$${V_k}=C^{\prime}\left( {\overline {{{t_k}}} } \right)=\sum\nolimits_{{i=0}}^{{2n+1}} {{{N^{\prime}}_{i,p}}\left( {\overline {{{t_k}}} } \right){{\mathbf{P}}_i}}.$$
(A7)

The solution methods for Ni, p(t) and N(k) i, p(t) are shown in Appendix 1.

Equation (A8) is a system of linear equations with a coefficient matrix 2(n + 1) × 2(n + 1) generated by combining Eqs. (A6) and (A7) in an alternating fashion. The construction of a parametric NURBS curve C(t) based on coordinate and derivative constraints is achieved by solving the following system of equations:

$$\left\{ {\begin{array}{*{20}{c}} {{{\mathbf{P}}_0}}&{}&{}&{}&{}&{}&{}&{}&{}&{}&=&{{Q_0}} \\ { - {{\mathbf{P}}_0}}&+&{{{\mathbf{P}}_1}}&{}&{}&{}&{}&{}&{}&{}&=&{\frac{{{t_4}}}{3}{V_0}} \\ {}&{}&{{N_{1,3}}\left( {\overline {{{t_1}}} } \right){{\mathbf{P}}_1}}&+& \cdots &+&{{N_{4,3}}\left( {\overline {{{t_1}}} } \right){{\mathbf{P}}_4}}&{}&{}&{}&=&{{Q_1}} \\ {}&{}&{{{N^{\prime}}_{1,3}}\left( {\overline {{{t_1}}} } \right){{\mathbf{P}}_1}}&+& \cdots &+&{{{N^{\prime}}_{4,3}}\left( {\overline {{{t_1}}} } \right){{\mathbf{P}}_4}}&{}&{}&{}&=&{{V_1}} \\ {}&{}&{}& \vdots &{}&{}& \vdots &{}&{}&{}& \vdots &{} \\ {}&{}&{}&{{N_{2n - 3,3}}\left( {\overline {{{t_{n - 1}}}} } \right){{\mathbf{P}}_{2n - 3}}}&+& \cdots &+&{{N_{2n,3}}\left( {\overline {{{t_{n - 1}}}} } \right){{\mathbf{P}}_{2n}}}&{}&{}&=&{{Q_{n - 1}}} \\ {}&{}&{}&{{{N^{\prime}}_{2n - 3,3}}\left( {\overline {{{t_{n - 1}}}} } \right){{\mathbf{P}}_{2n - 3}}}&+& \cdots &+&{{{N^{\prime}}_{2n,3}}\left( {\overline {{{t_{n - 1}}}} } \right){{\mathbf{P}}_{2n}}}&{}&{}&=&{{V_{n - 1}}} \\ {}&{}&{}&{}&{}&{}&{}&{ - {{\mathbf{P}}_{2n}}}&+&{{{\mathbf{P}}_{2n+1}}}&=&{\frac{{1 - {t_{m - 4}}}}{3}{V_n}} \\ {}&{}&{}&{}&{}&{}&{}&{}&{}&{{{\mathbf{P}}_{2n+1}}}&=&{{Q_n}} \end{array}} \right..$$
(A8)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lyu, M., Ren, B., Wang, X. et al. Neural spline flow multi-constraint NURBS method for three-dimensional automatic geological modeling with multiple constraints. Comput Geosci 27, 407–424 (2023). https://doi.org/10.1007/s10596-023-10202-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10596-023-10202-9

Keywords

Navigation