Skip to main content

Advertisement

SpringerLink
  • Computational Geosciences
  • Journal Aims and Scope
  • Submit to this journal
Simulation of flow in deformable fractures using a quasi-Newton based partitioned coupling approach
Download PDF
Your article has downloaded

Similar articles being viewed by others

Slider with three articles shown per slide. Use the Previous and Next buttons to navigate the slides or the slide controller buttons at the end to navigate through each slide.

Large scale simulation of pressure induced phase-field fracture propagation using Utopia

29 June 2021

Patrick Zulian, Alena Kopaničáková, … Rolf Krause

Multi-adaptive coupling of finite element meshes with peridynamic grids: robust implementation and potential applications

21 May 2022

Farshid Mossaiby, Pouria Sheikhbahaei & Arman Shojaei

Modelling of hydro-mechanical processes in heterogeneous fracture intersections using a fictitious domain method with variational transfer operators

02 March 2020

Cyrill von Planta, Daniel Vogler, … Rolf Krause

A Novel Approach for Direct Numerical Simulation of Hydraulic Fracture Problems

06 May 2020

F. Dalla Barba & F. Picano

A Two-Grid Decoupled Algorithm for a Multi-Dimensional Darcy–Brinkman Fracture Model

02 February 2022

Shuangshuang Chen, Qiumei Huang & Fei Xu

Coupling XFEM and peridynamics for brittle fracture simulation—part I: feasibility and effectiveness

18 April 2020

Ilias N. Giannakeas, Theodosios K. Papathanasiou, … Hamid Bahai

Advanced computation of steady-state fluid flow in Discrete Fracture-Matrix models: FEM–BEM and VEM–VEM fracture-block coupling

27 July 2018

S. Berrone, A. Borio, … F. Vicini

Finite-Volume Discretisations for Flow in Fractured Porous Media

16 May 2018

Ivar Stefansson, Inga Berre & Eirik Keilegavlen

Multiscale finite volume method with adaptive unstructured grids for flow simulation in heterogeneous fractured porous media

18 October 2021

Zahra Mehrdoost

Download PDF
  • Original Paper
  • Open Access
  • Published: 20 January 2022

Simulation of flow in deformable fractures using a quasi-Newton based partitioned coupling approach

  • Patrick Schmidt  ORCID: orcid.org/0000-0001-9834-30841,
  • Alexander Jaust2,
  • Holger Steeb1 &
  • …
  • Miriam Schulte2 

Computational Geosciences volume 26, pages 381–400 (2022)Cite this article

  • 298 Accesses

  • 2 Citations

  • Metrics details

Abstract

We introduce a partitioned coupling approach for iterative coupling of flow processes in deformable fractures embedded in a poro-elastic medium that is enhanced by interface quasi-Newton (IQN) methods. In this scope, a unique computational decomposition into a fracture flow and a poro-elastic domain is developed, where communication and numerical coupling of the individual solvers are realized by consulting the open-source library preCICE. The underlying physical problem is introduced by a brief derivation of the governing equations and interface conditions of fracture flow and poro-elastic domain followed by a detailed discussion of the partitioned coupling scheme. We evaluate the proposed implementation and undertake a convergence study to compare a classical interface quasi-Newton inverse least-squares (IQN-ILS) with the more advanced interface quasi-Newton inverse multi-vector Jacobian (IQN-IMVJ) method. These coupling approaches are verified for an academic test case before the generality of the proposed strategy is demonstrated by simulations of two complex fracture networks. In contrast to the development of specific solvers, we promote the simplicity and computational efficiency of the proposed partitioned coupling approach using preCICE and FEniCS for parallel computations of hydro-mechanical processes in complex, three-dimensional fracture networks.

Download to read the full article text

Working on a manuscript?

Avoid the common mistakes

References

  1. Alnæs, M. S., Blechta, J., Hake, J., Johansson, A., Kehlet, B., Logg, A., Richardson, B. C., Ring, J., Rognes, M. E., Wells, G. N.: The FEniCS Project Version 1.5. Arch. Numer. Softw. 3.100 (2015)

  2. Batchelor, G. K.: An introduction to fluid dynamics. Cambridge mathematical library. Cambridge University Press (2000)

  3. Belytschko, T., Liu, W. K., Moran, B., Elkhodary, K.: Nonlinear finite elements for continua and structures. Wiley (2013)

  4. Berge, R. L., Berre, I., Keilegavlen, E., Nordbotten, J. M., Wohlmuth, B.: Finite Volume Discretization for Poroelastic Media with Fractures Modeled by Contact Mechanics. Int. J. Numer. Methods Eng. 121.4, 644–663 (2020)

  5. Bogaers, A. E. J., Kok, S., Reddy, B. D., Franz, T.: Quasi-Newton methods for implicit black-box FSI coupling. Computer Methods in Applied Mechanics and Engineering 279, 113–132 (2014)

    Article  Google Scholar 

  6. Biot, M. A.: General Theory of Three-Dimensional Consolidation. J. Appl. Phys. 12.2, 155–164 (1941)

  7. Brezzi, F., Fortin, M.: Mixed and hybrid finite element methods. vol. 15. Springer Science & Business Media (2012)

  8. Buis, S., Piacentini, A., Déclat, D.: PALM: A Computational Framework for Assembling Highperformance Computing Applications. Concurr. Comput. Practice Exper. 18.2, 231–245 (2006)

  9. Bungartz, H. -J., Lindner, F., Gatzhammer, B., Mehl, M., Scheufele, K., Shukaev, A., Uekermann, B.: PreCICE - A Fully Parallel Library for Multi-Physics Surface Coupling. Comput. Fluids, vol. 141. Advances in Fluid- Structure Interaction, pp. 250–258 (2016)

  10. Castelletto, N., White, J. A., Tchelepi, H. A.: Accuracy and Convergence Properties of the Fixed-Stress Iterative Solution of Two-Way Coupled Poromechanics. Int. J Numer. Anal. Methods Geomechan. 39.14, 1593–1618 (2015)

  11. Degroote, J., Bruggeman, P., Haelterman, R., Vierendeels, J.: Stability of a coupling technique for partitioned solvers in FSI applications. Computers & Structures 86(23), 2224–2234 (2008)

    Article  Google Scholar 

  12. Degroote, J., Haelterman, R., Annerel, S., Bruggeman, P., Vierendeels, J.: Performance of partitioned procedures in fluid-structure interaction. Computers & Structures 88(7), 446 - 457 (2010)

    Article  Google Scholar 

  13. Deparis, S., Discacciati, M., Fourestey, G., Quarteroni, A.: Fluid-structure algorithms based on Steklov-Poincaré operators. Computer Methods in Applied Mechanics and Engineering 195(41), 5797–5812 (2006). John H. Argyris Memorial Issue. Part II

    Article  Google Scholar 

  14. Farhat, C.: CFD-Based Nonlinear Computational Aeroelasticity. In: Encyclopedia of Computational Mechanics. https://onlinelibrary.wiley.com/doi/abs/10.1002/0470091355.ecm063. John Wiley & Sons (2004), https://doi.org/10.1002/0470091355.ecm063

  15. Fetter, C.: Applied Hydrogeology. 4th edn. Prentice Hall (2001)

  16. Gassmann, F.: Über Die Elastizität Poröser Medien. Vierteljahrsschrift Naturforsch. Gesellschaft Zürich 96, 1–23 (1951)

  17. Gellasch, C. A., Wang, H. F., Bradbury, K. R., Bahr, J. M., Lande, L. L.: Reverse Water- Level Fluctuations Associated with Fracture Connectivity. Groundwater 52.1, 105–117 (2014)

  18. Girault, V., Wheeler, M. F., Ganis, B., Mear, M. E.: A Lubrication Fracture Model in a Poro-Elastic Medium. Math. Models Methods Appl. Sci. 25.04, 587–645 (2015)

  19. Girault, V., Kumar, K., Wheeler, M. F.: Convergence of Iterative Coupling of Geomechanics with Ow in a Fractured Poroelastic Medium. Comput. Geosci. 20.5, 997–1011 (2016)

  20. Haelterman, R., Degroote, J., Van Heule, D., Vierendeels, J.: The Quasi-Newton Least Squares Method: A new and fast secant method analyzed for linear systems. SIAM Journal on Numerical Analysis 47 (3), 2347–2368 (2009)

    Article  Google Scholar 

  21. Jaust, A., Schmidt, P.: Replication Data for Simulation of ow in deformable fractures using a quasi-Newton based partitioned coupling approach. Version V1 (2021)

  22. Jin, L., Zoback, M. D.: Fully Coupled Nonlinear Fluid Ow and Poroelasticity in Arbitrarily Fractured Porous Media: a Hybrid-Dimensional Computational Model. J. Geophys. Res. Solid Earth 122.10, 7626–7658 (2017)

  23. Joppich, W., Kürschner, M.: MpCCI — a tool for the simulation of coupled applications. Concurr. Comput. Practice Exper. 18.2, 183–192 (2006)

  24. Kataoka, S., Minami, S., Kawai, H., Yamada, T., Yoshimura, S.: A Parallel Iterative Partitioned Coupling Analysis System for Large-Scale Acoustic Fluid-Structure Interactions. Comput. Mech. 53.6, 1299–1310 (2014)

  25. Keilegavlen, E., Berge, R., Fumagalli, A., Starnoni, M., Stefansson, I., Varela, J., Berre, I.: PorePy: An Open-Source Simulation Tool for Flow and Transport in Deformable Fractured Rocks. Comput. Geosci. 25.1, 243–265 (2021)

  26. Kim, J., Tchelepi, H., Juanes, R.: Stability and Convergence of Sequential Methods for Coupled Ow and Geomechanics: Drained and Undrained Splits. Comput. Methods Appl. Mech. Eng. 200.23, 2094–2116 (2011)

  27. Kim, J., Tchelepi, H., Juanes, R.: Stability and Convergence of Sequential Methods for Coupled Ow and Geomechanics: Fixed-Stress and Fixed-Strain Splits. Comput. Methods Appl. Mech. Eng. 200.13, 1591–1606 (2011)

  28. Küttler, U., Wall, W.: Fixed-point fluid-structure interaction solvers with dynamic relaxation. Computational Mechanics 43, 61–72 (2008). 10.1007/s00466-008-0255-5

    Article  Google Scholar 

  29. Lindner, F.: Data transfer in partitioned multiphysics simulations : interpolation & communication. PhD thesis University of Stuttgart (2019)

  30. Lindner, F., Mehl, M., Uekermann, B.: Radial basis function interpolation for Black-Box Multi-Physics simulations. In: Conference Proceedings at the ECCOMAS Coupled Problems (2017)

  31. Lindner, F., Totounferoush, A., Mehl, M., Uekermann, B., Pour, N. E., Krupp, V., Roller, S., Reimann, T., Sternel, D. C., Egawa, R., Takizawa, H., Simonis, F.: ExaFSA Parallel Fluid- Structure-Acoustic Simulation. Software for Exascale Computing - SPPEXA 2016-2019. In: Bungartz, H.-J., Reiz, S., Uekermann, B., Neumann, P., Nagel, W. E. (eds.) , pp 271–300. Springer International Publishing, Cham (2020)

  32. Louis, C.: A study of groundwater ow in jointed rock and its in uence on the stability of rock masses. Imperial College. Rock Mech. Res. Rep. 10, 1–90 (1969)

  33. Mavko, G., Mukerji, T., Dvorkin, J.: The rock physics handbook: Tools for seismic analysis of porous media. Cambridge University Press (2009)

  34. Monge, A., Birken, P.: On the convergence rate of the Dirichlet-Neumann iteration for unsteady thermal fluid-structure interaction. Computational Mechanics 62(3), 525–541 (2018)

    Article  Google Scholar 

  35. Muskat, M.: The Ow of Homogeneous Fluids through Porous Media. Soil Sci. 46.2, 169 (1938)

  36. Ortiz, A. E.R., Renner, J., Jung, R.: Hydromechanical analyses of the hydraulic stimulation of borehole Basel 1. Geophys. J. Int. 185.3, 1266–1287 (2011)

  37. Quintal, B., Caspari, E., Holliger, K., Steeb, H.: Numerically quantifying energy loss caused by squirt ow. Geophys. Prospect. 67.8, pp. 2196–2212 (2019)

  38. Renner, J., Steeb, H.: Modeling of Fluid Transport in Geothermal Research. Handbook of Geomathematics. Berlin, Heidelberg: Springer Berlin Heidelberg, pp. 1443–1500 (2015)

  39. Renshaw, C. E.: On the Relationship between Mechanical and Hydraulic Apertures in Rough-Walled Fractures. J. Geophys Res. Solid Earth 100.B12, 24629–24636 (1995)

  40. Rodenberg, B., Desai, I., Hertrich, R., Jaust, A., Uekermann, B.: FEniCS-preCICE: Coupling FEniCS to other Simulation Software (2021)

  41. Scheufele, K., Mehl, M.: Robust Multisecant Quasi-Newton Variants for Parallel Fluid-Structure Simulations—and Other Multiphysics Applications. SIAM Journal on Scientific Computing 39(5), S404-S433 (2017)

    Article  Google Scholar 

  42. Schmidt, P., Dutler, N., Steeb, H.: Importance of Fracture Deformation throughout Hydraulic Testing under In-Situ Conditions. Geophys. J. Int. (2021)

  43. Schmidt, P., Steeb, H.: Numerical Aspects of Hydro-Mechanical Coupling of Fluid-Filled Fractures Using Hybrid-Dimensional Element Formulations and Non-Conformal Meshes. GEM - Int. J. Geomathematics 10.1, 14 (2019)

  44. Schmidt, P., Steeb, H., Renner, J.: Investigations into the Opening of Fractures during Hydraulic Testing Using a Hybrid-Dimensional Ow Formulation. Environ. Earth Sci. 80.497 (2021)

  45. Segura, J. M., double, I. Carol.: Coupled HM Analysis Using Zero-Thickness Interface Elements with Nodes—Part II: Verification and Application. Int. J. Numer. Anal. Methods Geomech. 32.18, 2103–2123 (2008)

  46. Segura, J. M.: Coupled HM analysis using zero-thickness interface elements with double nodes—Part II: Verification and application. Int. J. Numer. Anal. Methods Geomech. 32.18, 2083–2101 (2008)

  47. Settgast, R. R., Fu, P., Walsh, S. D., White, J. A., Annavarapu, C., Ryerson, F. J.: A Fully Coupled Method for Massively Parallel Simulation of Hydraulically Driven Fractures in 3-Dimensions. Int. J. Numer. Anal. Methods Geomech. 41.5, 627–653 (2017)

  48. Slack, T. Z., Murdoch, L. C., Germanovich, L. N., Hisz, D. B.: Reverse Water-Level Change during Interference Slug Tests in Fractured Rock. Water Resour. Res. 49.3, 1552–1567 (2013)

  49. Slattery, S. R., Wilson, P. P. H., Pawlowski, R. P.: The Data Transfer Kit: A geometric rendezvous-based tool for multiphysics data transfer. In: Proceedings of the 2013 International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering - M and C 2013 (2013)

  50. Steeb, H., Renner, J.: Mechanics of Poroelastic Media a Review with Emphasis on Foundational State Variables. Transport Porous Media 130, 437–461 (2019)

  51. Uekermann, B.: Partitioned Fluid-Structure Interaction on Massively Parallel Systems. Institut für Informatik, Technische Universität München. https://doi.org/https://mediatum.ub.tum.de/doc/1320661/document.pdf. https://doi.org/10.14459/2016md1320661 (2016)

  52. Vinci, C., Renner, J., Steeb, H.: A Hybriddimensional Approach for an Efficient Numerical Modeling of the Hydro-Mechanics of Fractures. Water Resour. Res. 50.2, 1616–1635 (2014)

  53. Vinci, C., Steeb, H., Renner, J.: The Imprint of Hydro-Mechanics of Fractures in Periodic Pumping Tests. Geophys. J. Int. 202.3, 1613–1626 (2015)

  54. Wang, H. F.: Theory of linear poroelasticity. Princeton University Press Princeton & Oxford (2000)

  55. Widlund, O., Toselli, A.: Domain Decomposition Methods - Algorithms and Theory. English (US). Computational Mathematics, vol. 34. Springer (2004)

  56. Witherspoon, P. A., Wang, J. S. Y., Iwai, K., Gale, J. E.: Validity of Cubic Law for Fluid Ow in a Deformable Rock Fracture. Water Resour. Res. 16.6, 1016–1024 (1980)

Download references

Acknowledgments

Holger Steeb and Patrick Schmidt gratefully acknowledge the funding provided by the German Federal Ministry of Education and Research (BMBF) for the GeomInt (I & II) project (Grant Numbers 03A0004E and 03G0899E) in the BMBF Geoscientific Research Program “Geo:N Geosciences for Sustainability”. Alexander Jaust, Miriam Schulte, and Holger Steeb thank the German Research Foundation (DFG) for supporting this work under Grant No. SFB 1313 (Project No. 327154368). We thank the preCICE developers for their support, especially B. Uekermann.

Funding

Open Access funding enabled and organized by Projekt DEAL. Holger Steeb and Patrick Schmidt gratefully acknowledge the funding provided by the German Federal Ministry of Education and Research (BMBF) for the GeomInt (I & II) project (Grant Numbers 03A0004E and 03G0899E) in the BMBF Geoscientific Research Program “Geo:N Geosciences for Sustainability”. Alexander Jaust, Miriam Schulte, and Holger Steeb thank the DFG for supporting this work under Grant No. SFB 1313 (Project No. 327154368).

Author information

Authors and Affiliations

  1. Institute of Applied Mechanics (CE), University of Stuttgart, Pfaffenwaldring 7, D-70 569, Stuttgart, Germany

    Patrick Schmidt & Holger Steeb

  2. Institute for Parallel and Distributed Systems, University of Stuttgart, Universitätsstraße 38, D-70 569, Stuttgart, Germany

    Alexander Jaust & Miriam Schulte

Authors
  1. Patrick Schmidt
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. Alexander Jaust
    View author publications

    You can also search for this author in PubMed Google Scholar

  3. Holger Steeb
    View author publications

    You can also search for this author in PubMed Google Scholar

  4. Miriam Schulte
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to Patrick Schmidt.

Ethics declarations

Ethics approval

Not applicable

Consent for publication

Not applicable

Conflicts of interest/Competing interests

Not applicable

Additional information

Availability of data and material

The data sets and codes are available via the data repository (DaRUS) of the University of Stuttgart [21] which has the identifier https://doi.org/10.18419/darus-1778 assigned.

Code availability

See Availability of data and material.

Consent to participate

Not applicable

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Schmidt, P., Jaust, A., Steeb, H. et al. Simulation of flow in deformable fractures using a quasi-Newton based partitioned coupling approach. Comput Geosci 26, 381–400 (2022). https://doi.org/10.1007/s10596-021-10120-8

Download citation

  • Received: 24 March 2021

  • Accepted: 29 November 2021

  • Published: 20 January 2022

  • Issue Date: April 2022

  • DOI: https://doi.org/10.1007/s10596-021-10120-8

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Fracture flow
  • Hydro-mechanics
  • Hybrid-dimensional modeling
  • Partitioned coupling
  • Quasi-Newton methods
  • preCICE

Mathematics Subject Classification (2010)

  • 76S05
  • 74F10
  • 90C53
Download PDF

Working on a manuscript?

Avoid the common mistakes

Advertisement

Over 10 million scientific documents at your fingertips

Switch Edition
  • Academic Edition
  • Corporate Edition
  • Home
  • Impressum
  • Legal information
  • Privacy statement
  • California Privacy Statement
  • How we use cookies
  • Manage cookies/Do not sell my data
  • Accessibility
  • FAQ
  • Contact us
  • Affiliate program

Not affiliated

Springer Nature

© 2023 Springer Nature Switzerland AG. Part of Springer Nature.