Skip to main content
Log in

Accelerating the multi-parameter least-squares reverse time migration using an appropriate preconditioner

  • Original Paper
  • Published:
Computational Geosciences Aims and scope Submit manuscript

Abstract

Least-squares reverse time migration has proven to be the state-of-the-art for linear imaging technique of complex subsurface structures. Assuming a variable-density acoustic medium, least-squares iterations have the potential to compensate for the artifacts caused by finite frequency of the seismic source, limited acquisition aperture, uneven illumination and parameter cross-talk. The main drawback of such an iterative imaging scheme is the substantial computational expense induced by additional modeling/adjoint steps at each iteration. To accelerate the convergence rate, we propose to leverage the variable-density pseudoinverse extended Born operator as a preconditioner. Our imaging scheme consists of two main steps. We first construct a true-amplitude extended image through Conjugate Gradient iterations with/without preconditioning. Then, by applying a 2D Radon transform, we simultaneously estimate the physical parameters from the angle-domain response using a weighted least-squares method. The second step does not involve wave propagation terms. Through numerical experiments, we show that the proposed preconditioning scheme not only largely reduces the required number of iterations to achieve a given data misfit but also significantly increases the quality of the inverted images even in presence of strong parameter cross-talk and inaccurate migration background models. This is further confirmed by analyzing the shape of the multi-parameter Hessian obtained on a model with limited size.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Baysal, E., Kosloff, D.D., Sherwood, J.W.C.: Reverse time migration. Geophysics 48(11), 1514–1524 (1983)

    Article  Google Scholar 

  2. Berenger, J.P.: A perfectly matched layer for the absorption of electromagnetic waves. J. Comput. Phys. 114(2), 185–200 (1994)

    Article  Google Scholar 

  3. Beylkin, G.: Imaging of discontinuities in the inverse scattering problem by inversion of a causal generalized Radon transform. J. Math. Phys. 26(1), 99–108 (1985)

    Article  Google Scholar 

  4. Biondi, E., Meadows, M., Biondi, B.: Amplitude Preserving Migration through Extended Acoustic Least-Squares Rtm. In: SEG Technical Program Expanded Abstracts 2019, pp. 4196–4200. Society of Exploration Geophysicists (2019)

  5. Chauris, H.: Full waveform inversion7. Seismic imaging: a practical approach, pp. 123–145 (2019)

  6. Chauris, H., Cocher, E.: From migration to inversion velocity analysis. Geophysics 82(3), S207–S223 (2017)

    Article  Google Scholar 

  7. Chauris, H., Cocher, E.: Review of Different Expressions for the Extended Born Approximate Inverse Operator. In: 80Th EAGE Conference and Exhibition, pp. Cp–556 (2018)

  8. Chen, K., Sacchi, M.D.: Elastic least-squares reverse time migration via linearized elastic full-waveform inversion with pseudo-Hessian preconditioning. Geophysics 82(5), S341–S358 (2017)

    Article  Google Scholar 

  9. Chen, K., Sacchi, M.D.: The importance of including density in elastic least-squares reverse time migration: Multiparameter crosstalk and convergence. Geophys. J. Int. 216(1), 61–80 (2019)

    Google Scholar 

  10. Claerbout, J.F.: Imaging the Earth’s interior. Blackwell Scientific Publications, Oxford (1985)

  11. Cocher, E.: Iterative migration velocity analysis: extension to surface-related multiple reflections. Ph.D. thesis, PSL Research University - MINES ParisTech (2017)

  12. Cocher, E., Chauris, H., Plessix, R. É.: Toward a stable iterative migration velocity analysis scheme. Geophysics 83(5), R475–R495 (2018)

    Article  Google Scholar 

  13. Dafni, R., Symes, W.W.: Asymptotic Inversion of the Variable Density Acoustic Model. In: SEG Technical Program Expanded Abstracts 2018, pp. 570–574. Society of Exploration Geophysicists (2018)

  14. Dutta, G., Schuster, G.T.: Attenuation compensation for least-squares reverse time migration using the viscoacoustic-wave equation. Geophysics 79(6), S251–S262 (2014)

    Article  Google Scholar 

  15. Etgen, J., Gray, S.H., Zhang, Y.: An overview of depth imaging in exploration geophysics. Geophysics 74(6), WCA5–WCA17 (2009)

  16. Farshad, M., Chauris, H.: From constant- to variable-density inverse extended Born modeling. Geophysics 85(4), S217–S232 (2020)

    Article  Google Scholar 

  17. Farshad, M., Chauris, H.: Sparsity-Promoting Pseudo-Inverse Born Operator in the Presence of Density Variations: An Efficient Multiparameter Imaging Tool. In: 82Th EAGE Conference and Exhibition, pp. Th–Dome5–17 (2020)

  18. Farshad, M., Chauris, H.: Sparsity–promoting multi-parameter pseudoinverse Born inversion in acoustic media. Geophysics 86(3), S205–S220 (2021)

    Article  Google Scholar 

  19. Forgues, É.: Inversion linearisée multi-paramètres via la théorie des rais. Ph.D. thesis, Institut français du pétrole - University Paris VII (1996)

  20. Gholami, A., Aghamiry, H.S., Abbasi, M.: Constrained nonlinear amplitude variation with offset inversion using Zoeppritz equations. Geophysics 83(3), R245–R255 (2018)

    Article  Google Scholar 

  21. Guo, P., McMechan, G.A.: Compensating q effects in viscoelastic media by adjoint-based least-squares reverse time migration. Geophysics 83(2), S151–S172 (2018)

    Article  Google Scholar 

  22. Hagen, V.S., Arntsen, B., Raknes, E.B.: A New Method for Constructing the Hessian in Elastic Full Waveform Inversion. In: SEG Technical Program Expanded Abstracts 2018, pp. 1359–1363. Society of Exploration Geophysicists (2018)

  23. Herrmann, F.J., Brown, C.R., Erlangga, Y.A., Moghaddam, P.P.: Curvelet–based migration preconditioning and scaling. Geophysics 74(4), A41–A46 (2009)

    Article  Google Scholar 

  24. Herrmann, F.J., Li, X.: Efficient least–squares imaging with sparsity promotion and compressive sensing. Geophys. Prospect. 60(4), 696–712 (2012)

    Article  Google Scholar 

  25. Hou, J., Symes, W.: Approximate Gauss-Newton Iteration for Full-Waveform Inversion. In: SEG Technical Program Expanded Abstracts 2016, pp. 1163–1168. Society of Exploration Geophysicists (2016)

  26. Hou, J., Symes, W.W.: An approximate inverse to the extended Born modeling operator. Geophysics 80(6), R331–R349 (2015)

    Article  Google Scholar 

  27. Hou, J., Symes, W.W.: Accelerating extended least-squares migration with weighted conjugate gradient iteration. Geophysics 81(4), S165–S179 (2016)

    Article  Google Scholar 

  28. Hou, J., Symes, W.W.: An alternative formula for approximate extended Born inversion. Geophysics 82(1), S1–S8 (2017)

    Article  Google Scholar 

  29. Jun, H., Park, E., Shin, C.: Weighted pseudo-Hessian for frequency-domain elastic full waveform inversion. J. Appl. Geophys. 123, 1–17 (2015)

    Article  Google Scholar 

  30. Köhn, D., De Nil, D., Kurzmann, A., Przebindowska, A., Bohlen, T.: On the influence of model parametrization in elastic full waveform tomography. Geophys. J. Int. 191(1), 325–345 (2012)

    Article  Google Scholar 

  31. Ten Kroode, F.: A wave–equation–based Kirchhoff operator. Inverse Probl. 28(11), 115013 (2012)

  32. Lailly, P.: The seismic inverse problem as a sequence of before stack migration. Proc. Conf. on Inverse Scattering, Theory and Applications, pp. 206–220 (1983)

  33. van Leeuwen, T., Aravkin, A.Y., Herrmann, F.J.: Seismic waveform inversion by stochastic optimization. International Journal of Geophysics (2011)

  34. van Leeuwen, T., Kumar, R., Herrmann, F.: Affordable Full Subsurface Image Volume–An Application to WEMVA. In: 77Th EAGE Conference and Exhibition, pp. WS05–C01 (2015)

  35. Li, Y., Chauris, H.: Coupling direct inversion to common-shot image-domain velocity analysis. Geophysics 83(5), R497–R514 (2018)

    Article  Google Scholar 

  36. Lin, Y., Lianjie, L.: Least-Squares Reverse-Time Migration with Modified Total-Variation Regularization. In: SEG Technical Program Expanded Abstracts 2015, pp. 4264–4269. Society of Exploration Geophysicists (2015)

  37. Liu, F., Hanson, D.W., Whitmore, N.D., Day, R.S., Stolt, R.H.: Toward a unified analysis for source plane–wave migration. Geophysics 71(4), S129–S139 (2006)

    Article  Google Scholar 

  38. Mallick, S.: AVO and elastic impedance. Lead. Edge 20, 1094–1104 (2001)

    Article  Google Scholar 

  39. Martin, G.S., Wiley, R., Marfurt, K.J.: Marmousi2: An elastic upgrade for Marmousi. Lead. Edge 25(2), 156–166 (2006)

    Article  Google Scholar 

  40. Métivier, L., Brossier, R., Operto, S., Virieux, J.: Multi-Parameter FWI-An Illustration of the Hessian Operator Role for Mitigating Trade-Off between Parameter Classes. In: 6Th EAGE Saint Petersburg International Conference and Exhibition, pp. Tu–BC–01 (2014)

  41. Mulder, W.A., Plessix, R. É.: A comparison between one-way and two-way wave-equation migration. Geophysics 69(6), 1491–1504 (2004)

    Article  Google Scholar 

  42. Nemeth, T., Wu, C., Schuster, G.T.: Least–squares migration of incomplete reflection data. Geophysics 64(1), 208–221 (1999)

    Article  Google Scholar 

  43. Nocedal, J., Wright, S.: Numerical optimization. Springer Science & Business Media (2006)

  44. Operto, S., Gholami, Y., Prieux, V., Ribodetti, A., Brossier, R., Métivier, L., Virieux, J.: A guided tour of multiparameter full-waveform inversion with multicomponent data: From theory to practice. Lead. Edge 32(9), 1040–1054 (2013)

    Article  Google Scholar 

  45. Pratt, R.G., Shin, C., Hick, G.: Gauss–Newton and full Newton methods in frequency–space seismic waveform inversion. Geophys. J. Int. 133(2), 341–362 (1998)

    Article  Google Scholar 

  46. Qu, Y., Huang, J., Li, Z., Guan, Z., Li, J.: Attenuation compensation in anisotropic least-squares reverse time migration. Geophysics 82(6), S411–S423 (2017)

    Article  Google Scholar 

  47. Ren, Z., Liu, Y., Sen, M.K.: Least-squares reverse time migration in elastic media. Geophys. J. Int. 208(2), 1103–1125 (2017)

    Article  Google Scholar 

  48. Rickett, J.E.: Illumination–based normalization for wave–equation depth migration. Geophysics 68(4), 1371–1379 (2003)

    Article  Google Scholar 

  49. Romero, L.A., Ghiglia, D.C., Ober, C.C., Morton, S.A.: Phase encoding of shot records in prestack migration. Geophysics 65(2), 426–436 (2000)

    Article  Google Scholar 

  50. Sava, P., Fomel, S.: Angle–domain common–image gathers by wavefield continuation methods. Geophysics 68(3), 1065–1074 (2003)

    Article  Google Scholar 

  51. Sava, P., Fomel, S.: Time–shift imaging condition in seismic migration. Geophysics 71(6), S209–S217 (2006)

    Article  Google Scholar 

  52. Schuster, G.T.: Least-Squares Cross-Well Migration. In: SEG Technical Program Expanded Abstracts 1993, pp. 110–113. Society of Exploration Geophysicists (1993)

  53. Schuster, G.T., Wang, X., Huang, Y., Dai, W., Boonyasiriwat, C.: Theory of multisource crosstalk reduction by phase-encoded statics. Geophys. J. Int. 184(3), 1289–1303 (2011)

    Article  Google Scholar 

  54. Sheriff, R.E., Geldart, L.P.: Exploration seismology, 2 edn. Cambridge University Press (1995)

  55. Shin, C., Jang, S., Min, D.J.: Improved amplitude preservation for prestack depth migration by inverse scattering theory. Geophys. Prospect. 49(5), 592–606 (2001)

    Article  Google Scholar 

  56. Sun, J., Fomel, S., Zhu, T., Hu, J.: Q-compensated least-squares reverse time migration using low-rank one-step wave extrapolation. Geophysics 81(4), S271–S279 (2016)

    Article  Google Scholar 

  57. Symes, W.W.: Mathematics of reflection seismology. Rice University, pp. 1–85 (1995)

  58. Symes, W.W.: Approximate linearized inversion by optimal scaling of prestack depth migration. Geophysics 73(2), R23–R35 (2008)

    Article  Google Scholar 

  59. Symes, W.W.: Migration velocity analysis and waveform inversion. Geophys. Prospect. 56(6), 765–790 (2008)

    Article  Google Scholar 

  60. Tarantola, A.: Inversion of seismic reflection data in the acoustic approximation. Geophysics 49 (8), 1259–1266 (1984)

    Article  Google Scholar 

  61. Tarantola, A.: A strategy for non linear inversion of seismic reflection data. Geophysics 51, 1893–1903 (1986)

    Article  Google Scholar 

  62. Virieux, J.: p-SV wave propagation in heterogeneous media: Velocity-stress finite-difference method. Geophysics 51(4), 889–901 (1986)

    Article  Google Scholar 

  63. Virieux, J., Asnaashari, A., Brossier, R., Métivier, L., Ribodetti, A., Zhou, W.: An Introduction to Full Waveform Inversion. In: Encyclopedia of Exploration Geophysics, pp. R1–1. Society of Exploration Geophysicists (2017)

  64. Virieux, J., Operto, S.: An overview of full–waveform inversion in exploration geophysics. Geophysics 74(6), WCC1–WCC26 (2009)

  65. Xue, Z., Chen, Y., Fomel, S., Sun, J.: Seismic imaging of incomplete data and simultaneous-source data using least-squares reverse time migration with shaping regularization. Geophysics 81(1), S11–S20 (2016)

    Article  Google Scholar 

  66. Yang, J., Elita Li, Y., Cheng, A., Liu, Y., Dong, L.: Least-squares reverse time migration in the presence of velocity errors. Geophysics 84(6), S567–S580 (2019)

    Article  Google Scholar 

  67. Yang, J., Liu, Y., Dong, L.: Least-squares reverse time migration in the presence of density variations. Geophysics 81(6), S497–S509 (2016)

    Article  Google Scholar 

  68. Zand, T., Siahkoohi, H.R., Malcolm, A., Gholami, A., Richardson, A.: Consensus optimization of total variation–based reverse time migration. Comput Geosci 24(3), 1393–1407 (2020)

    Article  Google Scholar 

  69. Zeng, C., Dong, S., Wang, B.: Least–squares reverse time migration: Inversion–based imaging toward true reflectivity. Lead. Edge 33(9), 962–968 (2014)

    Article  Google Scholar 

  70. Zhang, Y., Ratcliffe, A., Roberts, G., Duan, L.: Amplitude–preserving reverse time migration: From reflectivity to velocity and impedance inversion. Geophysics 79(6), S271–S283 (2014)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Milad Farshad.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix

A Derivation of Hessian

The exact definition of the normal equation reads as [45]

$$ \begin{array}{@{}rcl@{}} \int \mathrm{d} \mathbf{x}_{0} \left[\begin{array}{llllllllll} \mathbb{H}_{I_{p},I_{p}}(\mathbf{x},\mathbf{x}_{0}) & \mathbb{H}_{I_{p},\rho}(\mathbf{x},\mathbf{x}_{0}) \\ \mathbb{H}_{\rho,I_{p}}(\mathbf{x},\mathbf{x}_{0}) & \mathbb{H}_{\rho,\rho}(\mathbf{x},\mathbf{x}_{0}) \end{array}\right] \left[\begin{array}{l} \zeta_{I_{p}}(\mathbf{x}_{0}) \\ \zeta_{\rho}(\mathbf{x}_{0}) \end{array}\right]= \left[\begin{array}{l} \zeta_{I_{p}}^{mig}(\mathbf{x}) \\ \zeta_{\rho}^{mig}(\mathbf{x}) \end{array}\right], \end{array} $$
(21)

where the diagonal blocks of the Hessian matrix are

$$ \begin{array}{@{}rcl@{}} \mathbb{H}_{I_{p},I_{p}}(\mathbf{x},\mathbf{x}_{0}) = \frac{\partial^{2} J (\zeta_{I_{p}},\zeta_{\rho})}{\partial \zeta_{I_{p}}(\mathbf{x})\partial \zeta_{I_{p}}(\mathbf{x}_{0})}, \mathbb{H}_{\rho,\rho}(\mathbf{x},\mathbf{x}_{0}) = \frac{\partial^{2} J (\zeta_{I_{p}},\zeta_{\rho})}{\partial \zeta_{\rho}(\mathbf{x})\partial \zeta_{\rho}(\mathbf{x}_{0})}, \end{array} $$
(22)

and the non-diagonal blocks are

$$ \begin{array}{@{}rcl@{}} \mathbb{H}_{I_{p},\rho}(\mathbf{x},\mathbf{x}_{0}) = \frac{\partial^{2} J (\zeta_{I_{p}},\zeta_{\rho})}{\partial \zeta_{I_{p}}(\mathbf{x})\partial \zeta_{\rho}(\mathbf{x}_{0})}, \mathbb{H}_{\rho,I_{p}}(\mathbf{x},\mathbf{x}_{0}) = \frac{\partial^{2} J (\zeta_{I_{p}},\zeta_{\rho})}{\partial \zeta_{\rho}(\mathbf{x})\partial \zeta_{I_{p}}(\mathbf{x}_{0})}. \end{array} $$
(23)

Following the Schwarz’s theorem, the Hessian is a symmetric matrix. The approaches described in this article cannot provide the structure of the exact Hessian in Eqs. 22 and 23 as it consists of a two-step approach (see Algorithms 1 and 2: Conjugate Gradient followed by weighted least-squares projection). To represent the Hessian at each grid point, we first generate the response to a point scatterer either in \(\zeta _{I_{p}}\) or ζρ (application of \({\mathscr{L}}\)). Then, we migrate the resulting data to generate a subsurface offset-domain CIG (application of \({\mathscr{L}}^{T}\)), and finally apply the WLS method to estimate the corresponding point spread function in terms of \(\zeta _{I_{p}}\) and ζρ. The preconditioner is this scheme can be applied to the subsurface offset-domain CIG (application of \({\mathscr{L}}^{\dagger }{\mathscr{L}}^{\dagger ^{T}}\)) before the WLS step. Consequently, these approaches do not follow the Schwarz’s theorem, and thus cannot provide exactly a symmetric Hessian matrix, but rather approximately the Hessian.

B Alternative approach

Hou and Symes [26] expressed the pseudoinverse Born formula as a modification of RTM operator using two weighting operators in model and data spaces as

$$ \begin{array}{@{}rcl@{}} \mathcal{L}^{\dagger}_{Hou} = W_{model} \mathcal{L}^{T} W_{data}, \end{array} $$
(24)

where

$$ \begin{array}{@{}rcl@{}} W_{model} = 32 \frac{\beta_{0}}{{\rho_{0}^{3}}}\partial_{z}, W_{data} = I_{t}(I_{t}\partial_{s_{z}})(I_{t}\partial_{r_{z}}), \end{array} $$
(25)

and It denotes the causal indefinite time integration. Note that the weights in Eqs. 14 and 25 are exactly the same. We refer to [7] for a more detailed comparison.

To accelerate the convergence rate of the extended LSRTM in a constant-density acoustic medium, [27] reformulated the CG algorithm by replacing Euclidean norms with new weighted norms in data (\({\mathscr{D}}\)) and model (\({\mathscr{M}}\)) spaces using Wmodel and Wdata as

$$ \begin{array}{@{}rcl@{}} \langle \delta m_{1} , \delta m_{2} \rangle_{\mathscr{M}} &=& \langle \delta m_{1} ,W_{model} \delta m_{2} \rangle, \end{array} $$
(26)
$$ \begin{array}{@{}rcl@{}} \langle \delta d_{1} , \delta d_{2} \rangle_{\mathscr{D}} &=& \langle \delta d_{1} ,W_{data} \delta d_{2} \rangle. \end{array} $$
(27)

The algorithm of weighted CG (WCG) for variable-density LSRTM is summarized in Algorithm 3. In terms of implementation, as the application of these weight operators are relatively cheap (steps 8, 9, and 12 in Algorithm 3), the computational cost of the WCG algorithm is negligibly higher than the standard CG (Algorithm 1).

figure a

C Data availibility

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Farshad, M., Chauris, H. Accelerating the multi-parameter least-squares reverse time migration using an appropriate preconditioner. Comput Geosci 25, 2071–2092 (2021). https://doi.org/10.1007/s10596-021-10089-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10596-021-10089-4

Keywords

Navigation