Skip to main content
Log in

Structure exploiting methods for fast uncertainty quantification in multiphase flow through heterogeneous media

  • Original Paper
  • Published:
Computational Geosciences Aims and scope Submit manuscript

Abstract

We present a computational framework for dimension reduction and surrogate modeling to accelerate uncertainty quantification in computationally intensive models with high-dimensional inputs and function-valued outputs. Our driving application is multiphase flow in saturated-unsaturated porous media in the context of radioactive waste storage. For fast input dimension reduction, we utilize an approximate global sensitivity measure, for function-valued outputs, motivated by ideas from the active subspace methods. The proposed approach does not require expensive gradient computations. We generate an efficient surrogate model by combining a truncated Karhunen-Loéve (KL) expansion of the output with polynomial chaos expansions, for the output KL modes, constructed in the reduced parameter space. We demonstrate the effectiveness of the proposed surrogate modeling approach with a comprehensive set of numerical experiments, where we consider a number of function-valued (temporally or spatially distributed) QoIs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

Data sharing is not applicable to this article as no datasets were generated or analysed during the current study. The results reported in this article are all based on numerical simulations. The details of the benchmark problem considered can be found in [8].

References

  1. Alexanderian, A., Gremaud, P., Smith, R.: Variance-based sensitivity analysis for time-dependent processes. Reliability Engineering & System Safety (2020)

  2. Alexanderian, A., Reese, W., Smith, R. C, Yu, M.: Model input and output dimension reduction using Karhunen–Loève expansions with application to biotransport. ASCE-ASME J Risk and Uncert in Engrg Sys Part B Mech Engrg, 5(4) (2019)

  3. Alexanderian, A., Winokur, J., Sraj, I., Srinivasan, A., Iskandarani, M., Thacker, W. C, Knio, O. M: Global sensitivity analysis in an ocean general circulation model: a sparse spectral projection approach. Comput. Geosci. 16(3), 757–778 (2012)

    Article  Google Scholar 

  4. Angelini, O., Chavant, C., Chénier, E., Eymard, R., Granet, S.: Finite volume approximation of a diffusion-dissolution model and application to nuclear waste storage. Math. Comput. Simul. 81(10), 2001–2017 (2011)

    Article  Google Scholar 

  5. Saad, M., Dia, B. M., Saad, B.: Modeling and simulation of partially miscible two-phase flow with kinetics mass transfer. Mathematics and Computers in Simulation (2020)

  6. Betz, W., Papaioannou, I., Straub, D.: Numerical methods for the discretization of random fields by means of the Karhunen–Loève expansion. Comput. Methods Appl. Mech. Eng. 271, 109–129 (2014)

    Article  Google Scholar 

  7. Blatman, G., Sudret, B.: Efficient computation of global sensitivity indices using sparse polynomial chaos expansions. Reliab. Eng. Syst. Safety 95(11), 1216–1229 (2010)

    Article  Google Scholar 

  8. Bourgeat, A., Granet, S., Smaï, F.: Compositional two-phase flow in saturated-unsaturated porous media: benchmarks for phase appearance/disappearance. Radon Series on Computational and Applied Mathematics: Simulation of Flow in Porous Media (2012)

  9. Bourgeat, A., Jurak, M., Smaï, F.: Two-phase, partially miscible flow and transport modeling in porous media; application to gaz migration in a nuclear waste repository. Comput. Geosci. 6, 309–325 (2009)

    Google Scholar 

  10. Christie, M., Demyanov, V., Erbas, D.: Uncertainty quantification for porous media flows. J. Comput. Phys. 217(1), 143–158 (2006)

    Article  Google Scholar 

  11. Cleaves, H. L., Alexanderian, A., Guy, H., Smith, R. C., Yu, M.: Derivative-based global sensitivity analysis for models with high-dimension al inputs and functional outputs. SIAM J. Sci. Comput. 41, A3524–A3551 (2019)

    Article  Google Scholar 

  12. Constantine, P.: Active Subspaces: Emerging ideas for dimension reduction in parameter studies. Society for Industrial and Applied Mathematics (2015)

  13. Constantine, P., Diaz, P.: Global sensitivity metrics from active subspaces. Reliab. Eng. Syst. Saf. 162, 1–13 (2017)

    Article  Google Scholar 

  14. Costa, A.: Permeability-porosity relationship: A reexamination of the Kozeny-Carman equation based on a fractal pore-space geometry assumption. Geophysical research letters, 33(2) (2006)

  15. Crestaux, T., Le Maıtre, O., Martinez, J.-M.: Polynomial chaos expansion for sensitivity analysis. Reliab. Eng. Syst. Safety 94(7), 1161–1172 (2009)

    Article  Google Scholar 

  16. Fajraoui, N., Marelli, S., Sudret, B.: Sequential design of experiment for sparse polynomial chaos expansions. SIAM/ASA Journal on Uncertainty Quantification 5(1), 1061–1085 (2017)

    Article  Google Scholar 

  17. Gamboa, F., Janon, A., Klein, T., Lagnoux, A.: Sensitivity analysis for multidimensional and functional outputs. Electron. J. Statist. 8(1), 575–603 (2014)

    Article  Google Scholar 

  18. Grey, Z. J, Constantine, P. G: Active subspaces of airfoil shape parameterizations. AIAA J. 56(5), 2003–2017 (2018)

    Article  Google Scholar 

  19. Guy, H., Alexanderian, A., Yu, M.: A distributed active subspace method for scalable surrogate modeling of function valued outputs. arXiv:1908.02694 (2019)

  20. Hart, JL, Gremaud, PA, David, T: Global sensitivity analysis of high-dimensional neuroscience models An example of neurovascular coupling. Bull. Math. Sci. 81(6), 1805–1828 (2019)

    Google Scholar 

  21. Helton, J.C.: Uncertainty and sensitivity analysis techniques for use in performance assessment for radioactive waste disposal. Reliab. Eng. Syst. Safety 42(2-3), 327–367 (1993)

    Article  Google Scholar 

  22. Kress, R.: Linear Integral Equations, 3rd edn. Springer, New York (2014)

    Book  Google Scholar 

  23. Kucherenko, S, Rodriguez-Fernandez, M., Pantelides, C, Shah, N.: Monte Carlo evaluation of derivative-based global sensitivity measures. Reliab. Eng. Syst. Safety 94(7), 1135–1148 (2009)

    Article  Google Scholar 

  24. Kucherenko, S., Iooss, B.: Derivative-based global sensitivity measures. In: Ghanem, R., Higdon, D., Owhadi, H. (eds.) Handbook of Uncertainty Quantification. Springer (2017)

  25. Le Maître, O., Knio, O.: Spectral methods for uncertainty quantification: with applications to computational fluid dynamics. Springer, Berlin (2010)

    Book  Google Scholar 

  26. Li, G., Iskandarani, M., Le Hénaff, M., Winokur, J., Maître Le, O.P., Knio, O. M: Quantifying initial and wind forcing uncertainties in the gulf of Mexico. Comput. Geosci. 20(5), 1133–1153 (2016)

    Article  Google Scholar 

  27. Lie, K.-A.: An introduction to reservoir simulation using MATLAB/GNU Octave: User guide for the MATLAB Reservoir Simulation Toolbox (MRST). Cambridge University Press, Cambridge (2019)

    Book  Google Scholar 

  28. Loève, M.: Probability theory. I, 4th edn., vol. 45. Springer, New York-Heidelberg (1977). Graduate Texts in Mathematics

  29. Najm, H.N.: Uncertainty quantification and polynomial chaos techniques in computational fluid dynamics. Annu. Rev. Fluid Mech. 41, 35–52 (2009)

    Article  Google Scholar 

  30. Namhata, A., Oladyshkin, S., Dilmore, R. M, Zhang, L., Nakles, D. V: Probabilistic assessment of above zone pressure predictions at a geologic carbon storage site. Scientific Reports 6(1), 1–12 (2016)

    Article  Google Scholar 

  31. Neumann, R., Bastian, P., Ippisch, O.: Modeling and simulation of two-phase two-component flow with disappearing nonwetting phase. Comput. Geosci. 17(1), 139–149 (2012)

    Article  Google Scholar 

  32. Saad, B. M, Alexanderian, A., Prudhomme, S., Knio, O. M: Probabilistic modeling and global sensitivity analysis for co2 storage in geological formations: a spectral approach. Appl. Math. Model. 53, 584–601 (2018)

    Article  Google Scholar 

  33. Seshadri, P., Shahpar, S., Constantine, P., Parks, G., Adams, M.: Turbomachinery active subspace performance maps. Journal of Turbomachinery, 140(4) (2018)

  34. Severino, G., Leveque, S., Toraldo, G.: Uncertainty quantification of unsteady source flows in heterogeneous porous media. J. Fluid Mech. 870, 5–26 (2019)

    Article  Google Scholar 

  35. Sobol, I. M.: Estimation of the sensitivity of nonlinear mathematical models. Matematicheskoe Modelirovanie 2(1), 112–118 (1990)

    Google Scholar 

  36. Sobol, I.M.: Global sensitivity indices for nonlinear mathematical models and their Monte Carlo estimates. Mathematics and Computers in Simulation 55(1–3), 271–280 (2001). The Second IMACS Seminar on Monte Carlo Methods

    Article  Google Scholar 

  37. Sobol, I. M., Kucherenko, S.: Derivative based global sensitivity measures and their link with global sensitivity indices. Math. Comput. Simul. 79(10), 3009–3017 (2009)

    Article  Google Scholar 

  38. Sudret, B.: Global sensitivity analysis using polynomial chaos expansions. Reliab. Eng. Syst. Safety 93(7), 964–979 (2008)

    Article  Google Scholar 

  39. Friedlander, E.: “spgl1”: A solver for large-scale sparse reconstruction (2007)

  40. Xiao, S, Oladyshkin, S, Nowak, W: Reliability sensitivity analysis with subset simulation: application to a carbon dioxide storage problem. In: IOP Conference Series: Materials Science and Engineering, vol. 615, p 012051. IOP Publishing (2019)

  41. Yan, L., Guo, L., Xiu, D.: Stochastic collocation algorithms using l1-minimization. Int. J. Uncertain. Quantif. 2(3), 279–293 (2012)

    Article  Google Scholar 

  42. Zahm, O., Constantine, P. G, Prieur, C., Marzouk, Y. M: Gradient-based dimension reduction of multivariate vector-valued functions. SIAM J. Sci. Comput. 42(1), A534–A558 (2020)

    Article  Google Scholar 

Download references

Acknowledgements

The research of H. Cleaves and A. Alexanderian was partially supported by the National Science Foundation through the grant DMS-1745654. The work of A. Alexanderian was also supported in part through the grant DMS-1953271.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alen Alexanderian.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

1.1 A.1 Proof of upper bound on total error in product space

Proof

Let f(s,ξ) be in L2 of the product space \({{\varTheta }}\times {\mathscr{X}}\) and \(\left \|\cdot \right \|\) be the L2 error in the product space \({{\varTheta }}\times {\mathscr{X}}\). The truncated KLE of f is given by

$$ f_{N_{\text{qoi}}}^{\text{PC}}(s, \boldsymbol\xi) = \bar{f}(s) + \sum\limits_{i=1}^{{{N}_{\text{qoi}}}} \sqrt{\lambda_{i}} f_{i}^{\text{PC}}(\boldsymbol\xi) {{\varPhi}}_{i}(s). $$

The total error in the product space is given by

$$ \left\|f-f_{N_{\text{qoi}}}^{\text{PC}}\right\|^{2} \leq 2\left\|f-f_{{{{{N}_{\text{qoi}}}}\!}}\right\|^{2} + 2\left\|f_{{{{{N}_{\text{qoi}}}}\!}} - f_{N_{\text{qoi}}}^{\text{PC}}\right\|^{2} $$

We consider the first term

$$ \begin{array}{@{}rcl@{}} && 2\left\|f-f_{{{{{N}_{\text{qoi}}}}\!}}\right\|^{2}\\ &=& ~2\left\|\sum\limits_{i=1}^{\infty}\sqrt{\lambda_{i}}f_{i}(\boldsymbol\xi){{\varPhi}}_{i}(s) - \sum\limits_{i=1}^{{{N}_{\text{qoi}}}}\sqrt{\lambda_{i}}f_{i}(\boldsymbol\xi){{\varPhi}}_{i}(s)\right\|^{2}\\ &=& ~2{\int}_{{{\varTheta}}}{\int}_{\mathscr{X}} \left( \sum\limits_{i={{N}_{\text{qoi}}}+1}^{\infty}\sqrt{\lambda_{i}} f_{i}(\boldsymbol\xi){{\varPhi}}_{i}(s)\right)^{2} ds \!\upmu(d\boldsymbol\xi)\\ &=& ~2\sum\limits_{i,j ={{N}_{\text{qoi}}}+1}^{\infty} \sqrt{\lambda_{i}}\sqrt{\lambda_{j}} {\int}_{{{\varTheta}}} f_{i}(\boldsymbol\xi)f_{j}(\boldsymbol\xi){\int}_{\mathscr{X}}\\&& {{\varPhi}}_{i}(s){{\varPhi}}_{j}(s) ds \!\upmu (d\boldsymbol\xi)\\ &=& ~2\sum\limits_{i={{N}_{\text{qoi}}}+1}^{\infty}\lambda_{i} {\int}_{{{\varTheta}}} f_{i}(\boldsymbol\xi)^{2} \!\upmu (d\boldsymbol\xi) = ~2\sum\limits_{i={{N}_{\text{qoi}}}+1}^{\infty} \lambda_{i}. \end{array} $$

Changing the order of infinite sums and integral is a consequence of the Dominated Convergence Theorem and reordering of integrals is a justified by Fubini’s Theorem. The orthogonality of the eigenfunctions in \(L^{2}({\mathscr{X}})\) justifies the simplification in the second to last line, and the last step is a consequence of the KL modes properties.

Next, we consider the second error term. Let

$$ f_{i}^{\text{PC}} = \sum\limits_{k=0}^{{N}_{\text{PC}}} \hat{c}_{i,k} {{\varPsi}}_{k}(\boldsymbol\xi), $$

where \(\hat {c}_{i,k}\) represents the numerical approximation of the exact PCE coefficients ci,k and recall, \(f_{i} = {\sum }_{k=0}^{\infty } c_{i,k}{{\varPsi }}_{k}(\boldsymbol \xi )\) we have

$$ \begin{array}{@{}rcl@{}} && 2\left\|f_{{{{{N}_{\text{qoi}}}}\!}} - f_{N_{\text{qoi}}}^{\text{PC}}\right\|^{2} \\&=& 2\left\|\sum\limits_{i = 1}^{{{N}_{\text{qoi}}}} \sqrt{\lambda_{i}}f_{i}(\boldsymbol\xi){{\varPhi}}_{i}(s) -{\sum}_{i=1}^{{{N}_{\text{qoi}}}}\sqrt{\lambda_{i}}f_{i}^{\text{PC}}(\boldsymbol\xi) {{\varPhi}}(s)\right\|^{2}\\ &=&~ 2{\int}_{{{\varTheta}}} {\int}_{\mathscr{X}} \left( \sum\limits_{i=1}^{{{N}_{\text{qoi}}}} \sqrt{\lambda_{i}}{{\varPhi}}_{i}(s)\left[f_{i}(\boldsymbol\xi)-f_{i}^{\text{PC}}(\boldsymbol\xi)\right]\right)^{2} ds \!\upmu (d\boldsymbol\xi) \end{array} $$
$$ \begin{array}{@{}rcl@{}} &=&~ 2\sum\limits_{i,j = 1}^{{{N}_{\text{qoi}}}} \sqrt{\lambda_{i}}\sqrt{\lambda_{j}} {\int}_{{{\varTheta}}} (f_{i}-f_{i}^{\text{PC}})(f_{j}-f_{j}^{\text{PC}}) {\int}_{\mathscr{X}}\\&& {{\varPhi}}_{i}(s){{\varPhi}}_{j}(s) ds \!\upmu (d\boldsymbol\xi)\\ &=&~ 2\sum\limits_{i=1}^{{{N}_{\text{qoi}}}} \lambda_{i}{\int}_{{{\varTheta}}} (f_{i}(\boldsymbol\xi)-f_{i}^{\text{PC}}(\boldsymbol\xi))^{2} \!\upmu(d\boldsymbol\xi)\\ &=&~ 2\sum\limits_{i=1}^{{{N}_{\text{qoi}}}}\lambda_{i} {\int}_{{{\varTheta}}} \left( \sum\limits_{k =0}^{\infty} c_{i,k}{{\varPsi}}_{k}(\boldsymbol\xi) - \sum\limits_{k=0}^{{N}_{\text{PC}}}\hat{c}_{i,k}{{\varPsi}}_{k}(\boldsymbol\xi)\right)^{2} \!\upmu (d\boldsymbol\xi)\\ &=& 2\sum\limits_{i = 1}^{{{N}_{\text{qoi}}}} \lambda_{i}{\int}_{{{\varTheta}}} \left( \sum\limits_{k=0}^{{N}_{\text{PC}}} (c_{i,k} - \hat{c}_{i,k}){{\varPsi}}_{k}(\boldsymbol\xi) + \sum\limits_{k=1+{N}_{\text{PC}}}^{\infty} c_{i,k}{{\varPsi}}_{k}(\boldsymbol\xi)\!\right)^{2} \!\upmu (d\boldsymbol\xi)\\ &=&~ 2\sum\limits_{i=1}^{{{N}_{\text{qoi}}}} \lambda_{i} \sum\limits_{k=1}^{{N}_{\text{PC}}}(c_{i,k}-\hat{c}_{i,k})^{2} \left\|{{\varPsi}}_{k}\right\|_{L^2({{\varTheta}})}^{2}\\ &&+~ 2\sum\limits_{i=1}^{{{N}_{\text{qoi}}}} \lambda_{i} \sum\limits_{j=1+{N}_{\text{PC}}}^{\infty} c_{i,j}^{2}\left\|{{\varPsi}}_{j}\right\|_{L^2({{\varTheta}})}^{2}. \end{array} $$

The simplification in the third line a consequence of the orthogonality of the PCE basis functions.

Thus, we have a bound on the total error

$$ \begin{array}{@{}rcl@{}} && \left\|f - {f_{{{{{N}_{\text{qoi}}}}\!}}}^{{\text{PC}}}\right\|^{2} \!\leq\! 2\left\|f - f_{{{{{N}_{\text{qoi}}}}\!}}\right\|^{2} + 2\left\|f_{{{{{N}_{\text{qoi}}}}\!}} - {f_{{{{{N}_{\text{qoi}}}}\!}}}^{{\text{PC}}}\right\|^{2}\\ &=&~ 2\sum\limits_{i={{N}_{\text{qoi}}}+1}^{\infty}\lambda_{i} + \sum\limits_{i=1}^{{{N}_{\text{qoi}}}} \lambda_{i} \sum\limits_{k=1}^{{N}_{\text{PC}}}(c_{i,k}-\hat{c}_{i,k})^{2} \left\|{{\varPsi}}_{k}\right\|_{L^2({{\varTheta}})}^{2}\\ &&+ 2\sum\limits_{i=1}^{{{N}_{\text{qoi}}}} \lambda_{i} \sum\limits_{j=1+{N}_{\text{PC}}}^{\infty} c_{i,j}^{2}\left\|{{\varPsi}}_{j}\right\|_{L^2({{\varTheta}})}^{2}. \end{array} $$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cleaves, H., Alexanderian, A. & Saad, B. Structure exploiting methods for fast uncertainty quantification in multiphase flow through heterogeneous media. Comput Geosci 25, 2167–2189 (2021). https://doi.org/10.1007/s10596-021-10085-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10596-021-10085-8

Keywords

Mathematics Subject Classification (2010)

Navigation