Skip to main content

Advertisement

Log in

Effective viscoelastic representation of gas-hydrate bearing sediments from finite-element harmonic experiments

  • Original Paper
  • Published:
Computational Geosciences Aims and scope Submit manuscript

Abstract

We present a novel numerical upscaling technique for modeling the wave response of gas-hydrate bearing sediments composed of a rock frame, gas-hydrate and water, where the hydrate consists of ice-like lattice of water molecules with methane trapped inside. These sediments are highly heterogeneous at mesoscopic scales, much smaller than the wavelength but much larger than the pore size, inducing substantial seismic wave attenuation and dispersion due to mode conversions. The proposed numerical upscaling procedure simulates the wave-induced fluid-flow loss mechanism by computing an average effective viscoelastic medium having the same behavior of the original sediment. The method determines the complex stiffness coefficients associated with the viscoelastic medium by solving numerically boundary value problems formulated in the space-frequency domain, representing compressibility and shear experiments. The procedure is applied to composite media with regions of different amounts of hydrate with patchy or periodic-layer distributions, which define an anisotropic effective viscoelastic medium, respectively. The examples demonstrate that variations in hydrate content induce strong attenuation and dispersion effects on seismic waves due to the mesoscopic loss mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ecker, C., Dvorkin, J., Nur, A.M.: Estimating the amount of gas hydrate and free gas from marine sediments. Geophysics 65(2), 565–573 (2000)

    Article  Google Scholar 

  2. Biot, M.A.: Mechanics of deformation and acoustic propagation in porous media. J. Appl. Phys. 33, 1482–1498 (1962)

    Article  Google Scholar 

  3. Carcione, J.M., Seriani, G.: Seismic velocities in permafrost. Geophys. Prosp. 46, 441–454 (1998)

    Article  Google Scholar 

  4. Carcione, J.M., Tinivella, U.: Bottom-simulating reflectors: Seismic velocities and AVO effects. Geophysics 65(1), 54–67 (2000)

    Article  Google Scholar 

  5. Carcione, J.M., Seriani, G.: Wave simulation in frozen porous media. J. Comput. Phys. 170, 676–695 (2001)

    Article  Google Scholar 

  6. Carcione, J.M., Santos, J.E., Ravazzoli, C.L., Helle, H.B.: Wave simulation in partially frozen porous media with fractal freezing conditions. J. Appl. Phys. 94(12), 7839–7847 (2003)

    Article  Google Scholar 

  7. Carcione, J.M., Helle, H.B., Santos, J.E., Ravazzoli, C.L.: A constitutive equation and generalized Gassmann modulus for multi-mineral porous media. Geophysics 70(2), N17–N26 (2005)

    Article  Google Scholar 

  8. Carcione, J.M.: Wave Fields in Real Media. Theory and numerical simulation of wave propa-gation in anisotropic, anelastic, porous and electromagnetic media, 3rd ed., extended and revised Elsevier Science Oxford (2014)

  9. Frankel, A., Clayton, R.W.: Finite difference simulation of seismic wave scattering: implications for the propagation of short period seismic waves in the crust and models of crustal heterogeneity. J. Geophys. Res. 91, 6465–6489 (1986)

    Article  Google Scholar 

  10. Guerin, G.: Modeling of acoustic wave dissipation in gas-hydrate bearing sediments. Geochemistry, Geophysics, Geosystems 6 (7). https://doi.org/10.1029/2005GC000918 (2005)

  11. Krzikalla, F., Müller, T.M.: Anisotropic p-SV-wave dispersion and attenuation due to interlayer flow in thinly layered porous rocks. Geophysics 76, WA135 (2011). https://doi.org/10.1190/1.3555077

    Article  Google Scholar 

  12. Leclaire, P., Cohen-Tenoudji, F., Aguirre Puente, J.: Extension of Biot’s theory to wave propagation in frozen porous media. J. Acoust. Soc. Amer. 96, 3753–3767 (1994)

    Article  Google Scholar 

  13. Leclaire, P., Cohen-Tenoudji, F., Aguirre Puente, J.: Observation of two longitudinal and two transverse waves in a frozen porous medium. J. Acoust. Soc. Am. 97, 2052–2055 (1995)

    Article  Google Scholar 

  14. Lee, M.W., Collet, T.S.: Elastic properties of gas hydrate-bearing sediments. Geophysics 66 (3), 763–771 (2001)

    Article  Google Scholar 

  15. Lee, M.W.: Biot-gassmann theory for velocities of gas hydrate-bearing sediments. Geophysics 67(6), 1711–1719 (2002)

    Article  Google Scholar 

  16. Linga, P., Clarke, M.A., Englezos, P.: Gas hydrates and applications. Part B 35, 1353–1608 (2016)

    Google Scholar 

  17. Santos, J.E., Ravazzoli, C.L., Carcione, J.M.: A model for wave propagation in a composite solid matrix saturated by a single-phase fluid. J. Acoust. Soc. Am. 115(6), 2749–2760 (2004)

    Article  Google Scholar 

  18. Santos, J.E., Ravazzoli, C.L., Gauzellino, P.M., Carcione, J.M.: A numerical upscaling procedure to estimate effective bulk and shear moduli in heterogeneous fluid-saturated porous media. Comp. Methods Appl.Mech. Eng. 198, 2067–2077 (2009)

    Article  Google Scholar 

  19. Santos, J.E., Carcione, J.M.: Finite-element harmonic experiments to model fractured induced anisotropy in poroelastic media. Comp. Methods Appl.Mech. Eng. 283, 1189–1213 (2015)

    Article  Google Scholar 

  20. Santos, J.E., Gauzellino, P.M.: Numerical Simulation in Applied Geophysics. Lecture Notes in Geosystems Mathematics and Computing, Birkhauser (2017)

    Google Scholar 

  21. Waite, W.F., Santamarina, J.C., Cortes, D.D., Dugan, B., Espinoza, D.N., Germaine, J., Jang, J., Jung, J.W., Kneafsey, T.J., Shin, H., Soga, K., Winters, W.J., Yun, T.S.: Physical porperties of hydrate-bearing sediments. Rev. Geophys. 47, RG4003 (2009). https://doi.org/10.1029/2008RG000279

    Article  Google Scholar 

  22. White, J.E., Mikhaylova, N.G., Lyakhovitskiy, F.M.: Low-frequency seismic waves in fluid saturated layered rocks. Phys. Solid Earth 11, 654–659 (1975)

    Google Scholar 

Download references

Acknowledgements

This work was partially funded by ANPCyT, Argentina (PICT 2015 1909) and Universidad de Buenos Aires (UBACyT 20020160100088BA). The authors are grateful to the National Natural Science Foundation of China (Grant nos. 41974123) and the Jiangsu Province Outstanding Youth Fund Project (Grant no. BK20200021).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jing Ba.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A

The coefficients in the constitutive relations Eqs. 5–7 are computed as follows. Let Ks1,m, Ks3,m, μs1,m and μs3,m denote the bulk and shear modulus of the two solid (dry) frames, respectively. We assume that Ks1,m is known and Ks3,m, μs1,m and μs3,m can be determined using a percolation-type model. See formulas A8-A9 of Appendix A in [17] for details. Then with Ks1, μs1, Ks3 and μs3 denoting the bulk and shear moduli of the grains in the two solid phases, respectively, and Kf the bulk modulus of the fluid phase, the coefficients μ1, μ3 and μ13 are:

$$ \begin{array}{@{}rcl@{}} \mu_{1} &=& [(1-g_{1})\phi_{1}]^{2} \mu_{av} + \mu_{s1,m},\\ \mu_{3} &=& [(1-g_{3})\phi_{3}]^{2} \mu_{av} + \mu_{s3,m},\\ \mu_{13} &=& (1-g_{1})(1-g_{3})\phi_{1}\phi_{3} \mu_{av},\\ g_{1} &=& \frac{\mu_{s1,m}}{\phi_{1} \mu_{s1}},\quad\quad g_{3} = \frac{\mu_{s3,m}}{\phi_{3} \mu_{s3}},\\ \mu_{av}&=& \big[\frac{(1-g_{1})\phi_{1}}{\mu_{s1}} + \frac{\phi}{2 \omega \eta} +\frac{(1-g_{3})\phi_{3}}{\mu_{s3}}\big]^{-1}. \end{array} $$
(34)

The symbol ω in the definition of μav above denotes the angular frequency, taken to be 2 π in the examples. The remaining elastic coefficients in Eqs. 5–7 are given by the following expressions [17]

$$ \begin{array}{@{}rcl@{}} K_{G1} &=& K_{1} + ({S_{1}})^{2} K_{2} + 2 {S_{1}} C_{12},\\ K_{G3} &=& K_{3} + ({S_{3}})^{2} K_{2} + 2 {S_{3}} C_{23},\\ B_{1} &=& \frac{{S_{1}} K_{2} + C_{12}}{\phi},\\ B_{2} &=& \frac{{S_{3}} K_{2} + C_{23}}{\phi},\\ B_{3} &=& C_{13} +{S_{3}} C_{12} + {S_{1}} C_{23} + {S_{3}} {S_{1}} K_{2}, \end{array} $$
(35)
$$ \begin{array}{@{}rcl@{}} K_{av}&=&\left[(1 - c_{1}) \frac{\phi_{1}}{K_{s1}} +\frac{\phi}{K_{f}} +(1 - c_{3})\frac{\phi_{3}}{K_{s3}}\right]^{-1}, \end{array} $$

where

$$ \begin{array}{@{}rcl@{}} &&K_{1} = \left[(1 - c_{1})\phi_{1}\right]^{2} K_{av} + K_{s1,m}, \\ &&K_{2} = {\phi_{w}^{2}} K_{av}\\ &&K_{3} = \left[(1 - c_{3})\phi_{3}\right]^{2} K_{av} + K_{s3,m},\\ &&C_{12}= (1 - c_{1}) \phi_{1} \phi K_{av}, \\ &&C_{13}= (1 - c_{1}) (1 - c_{3})\phi_{1} \phi_{3} K_{av},\\ &&C_{23}= (1 - c_{3}) \phi \phi_{3} K_{av},\\ &&c_{1} = \frac{K_{s1,m}}{\phi_{1} K_{s1}}, \quad c_{3} = \frac{K_{s3,m}}{\phi_{3} K_{s3}}. \end{array} $$
(36)

Appendix B

Here we describe a procedure to determine the dissipation factors of an associated classic Biot model that in the low-frequency range is equivalent to a composite material. The following notation is used to define the associated classic Biot model [2].

The solid and fluid particle displacements are denoted as \({\widehat {{\mathbf u}}}^{(s)}, {\widehat {{\mathbf u}}}^{(f)}\), while \({\widehat {\boldsymbol \sigma }}\) and \({\widehat p}_{f}\) denote the total stress and fluid pressure.

The constitutive relations and the diffusion equation of the classic Biot model are

$$ \begin{array}{@{}rcl@{}} &&{\widehat \sigma}_{ij} = \big[K_{G} {\widehat \theta}^{(s)} -B {\widehat \theta}^{(f)}\big] \delta_{ij} + 2 \mu {\widehat d}_{ij}^{(s)}, \end{array} $$
(37)
$$ \begin{array}{@{}rcl@{}} &&{\widehat p}_{f} = -B {\widehat \theta}^{(s)} - {\widehat K_{av}} {\widehat \theta}^{(f)}, \end{array} $$
(38)
$$ \begin{array}{@{}rcl@{}} && \nabla\cdot {\widehat {\boldsymbol \sigma}} = 0, \end{array} $$
(39)
$$ \begin{array}{@{}rcl@{}} && i \o \frac{\eta}{{\widehat \kappa}} {\widehat {{\mathbf u}}}^{(f)} + \nabla p_{f} = 0 , \end{array} $$
(40)

where

$$ {\widehat d}_{ij}^{(s)} = \epsilon_{ij}({\widehat {{\mathbf u}}}^{s)}) - \frac13 {\widehat \theta}^{(s)} \delta_{ij}, \quad {\widehat \theta}^{(m)} = \nabla\cdot {\widehat {{\mathbf u}}}^{(m)}, m=s,f. $$

In Eqs. 3740, KG and μ are the bulk and shear moduli of the saturated material, while B and \({\widehat K_{av}}\) are elastic coupling coefficients. Furthermore, \({\widehat \kappa }\) denotes the rock permeability and η the fluid viscosity.

Let \({K^{a}_{s}}, {K^{a}_{m}}, K_{f}\) denote the bulk moduli of the solid grains, dry matrix and fluid, respectively. The coefficient μ is the shear modulus of the dry matrix and the other coefficients in Eqs. 3740 can be determined from the relations

$$ \begin{array}{@{}rcl@{}} &&K_{G} = {K^{a}_{m}} + \alpha^{2}\widehat K_{av}, \quad \alpha = 1 - \frac{{K^{a}_{m}}}{{K^{a}_{s}}}, \end{array} $$
(41)
$$ \begin{array}{@{}rcl@{}} &&\widehat K_{av} = \left[\frac{\alpha - \phi_{w}}{{K^{a}_{s}}} + \frac{\phi_{w}}{K_{f}}\right]^{-1},\quad B = \alpha \widehat K_{av}.\label {defcoef2} \end{array} $$
(42)

Assume that u(1) = u(3)u(s) (the low-frequency assumption is used here) and define the total stress tensor as

$$ \begin{array}{@{}rcl@{}} \tau_{ij} = \tau_{ij}^{(1)} + \tau_{ij}^{(3)}. \end{array} $$
(43)

Then adding Eqs. 5 and 6, we obtain

$$ \begin{array}{@{}rcl@{}} &&\tau_{ij} = \big[\left( K_{G1} + K_{G3} + 2 ~ B_{3}\right) \theta^{(s)} \end{array} $$
(44)
$$ \begin{array}{@{}rcl@{}} &&\qquad -\left( B_{1} + B_{2} \right) \theta^{(f)}] \delta_{ij} + 2 \left( \mu_{1} + \mu_{3} + \mu_{13}\right) d_{ij}^{(s)},\\ &&p_{f} = -(B_{1} + B_{2}) \theta^{(s)} - K_{av} \theta^{(f)}. \end{array} $$
(45)

Now from Eqs. 3738 and Eqs. 4445, we can identify the elastic coefficients of the associated classic Biot model as follows

$$ \begin{array}{@{}rcl@{}} &&K_{G} = K_{G1} + K_{G3} + 2 ~ B_{3}, \end{array} $$
(46)
$$ \begin{array}{@{}rcl@{}} &&B = B_{1} + B_{2}, \end{array} $$
(47)
$$ \begin{array}{@{}rcl@{}} &&\mu = \mu_{1} + \mu_{3} +\mu_{13}, \end{array} $$
(48)
$$ \begin{array}{@{}rcl@{}} &&{\widehat K_{av}} = K_{av}, \end{array} $$
(49)

with the coefficients in the right-hand side of Eqs. 46– 49 computed by the relations given in Appendix A.

Next, note that we can determine \(\alpha , {K^{a}_{m}}\) and \({K^{a}_{s}}\) in Eqs. 41 and 42 as follows:

$$ \begin{array}{@{}rcl@{}} \alpha = \frac{B}{\widehat K_{av}}, \quad {K^{a}_{m}} = K_{G} - \alpha^{2} \widehat K_{av}\quad {K^{a}_{s}} = \frac{{K^{a}_{m}}}{1 - \alpha}, \end{array} $$
(50)

where B, \(\widehat K_{av}\) and KG are given in terms of the coefficients of the GH-bearing sediments by Eqs. 4647 and 49, respectively.

The procedure to determine the coefficients \( K_{G}, B, {\widehat K_{av}}\) and μ in Eqs. 4649 can be shown to give identical results to those given in Carcione et al. [7]

Furthermore, from equations (B5) and (B8) in Santos et al. [17]

$$ \begin{array}{@{}rcl@{}} &&\phi_{w}\left( S_{3} \phi_{w} f_{22} - f_{12} \right) = b_{23}, \end{array} $$
(51)
$$ \begin{array}{@{}rcl@{}} &&\phi_{w}\left( f_{12}+ S_{1} \phi f_{22} \right) = b_{12}, \end{array} $$
(52)

where

$$ \begin{array}{@{}rcl@{}} b_{12} = {\phi_{w}^{2}} \frac{\eta}{\kappa_{1}},\qquad b_{23} = {\phi_{w}^{2}} \frac{\eta}{\kappa_{3}}, \end{array} $$
(53)

with κ1 and κ3 denoting the permeabilities of two solid phases Thus, add Eqs. 51 and 52 to get

$$ \begin{array}{@{}rcl@{}} f_{22} = \eta\left( \frac{1}{\kappa_{1}} + \frac{1}{\kappa_{3}}\right). \end{array} $$
(54)

Next, from the low-frequency assumption, the f12-terms in Eq. 3 cancel and this equation reduces to

$$ \begin{array}{@{}rcl@{}} i \o f_{22} {{\mathbf u}}^{(2)} + \nabla p_{f}=0. \end{array} $$
(55)

Thus Eqs. 4054 and 55 allow to identify the effective permeability \({\widehat \kappa }\) of the associated classic Biot model by the relation

$$ \begin{array}{@{}rcl@{}} \frac{1}{{\widehat \kappa}} = \left( \frac{1}{\kappa_{1}} + \frac{1}{\kappa_{3}}\right). \end{array} $$
(56)

Equations 48 and 50 allow to determine the coefficients in Eqs. 4142 in the constitutive relations of the the associated classic Biot medium to the GH-bearing sediment.

Remark

Equations 4649 and 56 may also be used in the case of shaley sandstones as presented in Santos et al. [17].

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Santos, J.E., Gauzellino, P.M., Carcione, J.M. et al. Effective viscoelastic representation of gas-hydrate bearing sediments from finite-element harmonic experiments. Comput Geosci 25, 2005–2017 (2021). https://doi.org/10.1007/s10596-021-10077-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10596-021-10077-8

Keywords

Mathematics Subject Classification (2010)

Navigation