Adams, J. C.: MUDPACK: Multigrid Portable fortran software for the efficient solution of linear elliptic partial differential equations. Appl. Math. Comput. 34(2), 113–146 (1989). https://doi.org/10.1016/0096-3003(89)90010-6
Google Scholar
Adams, J.C., Swarztrauber, P.N., Sweet, R.: FISHPACK: efficient fortran subprograms for the solution of separable elliptic partial differential equations. Astrophysics Source Code Library (2016)
Adams, M., Colella, P., Graves, D. T., Johnson, J., Keen, N., Ligocki, T. J., Martin, D. F., McCorquodale, P., Modiano, D., Schwartz, P., Sternberg, T., Straalen, B. V.: Chombo software package for AMR applications, design document Lawrence Berkeley National Laboratory Technical Report LBNL-6616E (2015)
Anderson, C., Greengard, C.: On vortex methods. SIAM J. Numer. Anal. 22(3), 413–440 (1985). https://doi.org/10.1137/0722025
Article
Google Scholar
Angot, P., Bruneau, C. H., Fabrie, P.: A penalization method to take into account obstacles in incompressible viscous flows. Numer. Math. 81(4), 497–520 (1999). https://doi.org/10.1007/s002110050401
Article
Google Scholar
Archie, G.: The electrical resistivity log as an aid in determining some reservoir characteristics. Trans. AIME 146(01), 54–62 (1942). https://doi.org/10.2118/942054-G
Article
Google Scholar
Balay, S., Abhyankar, S., Adams, M.F., Brown, J., Brune, P., Buschelman, K., Dalcin, L., Eijkhout, V., Gropp, W.D., Kaushik, D., Knepley, M.G., May, D.A., McInnes, L.C., Mills, R.T., Munson, T., Rupp, K., Sanan, P., Smith, B.F., Zampini, S., Zhang, H., Zhang, H.: PETSc Web page. http://www.mcs.anl.gov/petsc (2018)
Battiato, I., Tartakovsky, D. M., Tartakovsky, A. M., Scheibe, T. D.: Hybrid models of reactive transport in porous and fractured media. Adv. Water Resour. 34(9), 1140–1150 (2011). https://doi.org/10.1016/j.advwatres.2011.01.012
Article
Google Scholar
Beale, J. T., Majda, A.: Vortex methods. I: convergence in three dimensions. Math. Comput. 39(159), 1–27 (1982). https://doi.org/10.2307/2007617
Google Scholar
Beale, J. T., Majda, A.: Vortex methods. II: higher order accuracy in two and three dimensions. Math. Comput. 39(159), 29–52 (1982). https://doi.org/10.2307/2007618
Google Scholar
Bear, J.: Dynamics of Fluids in Porous Media, vol. 120. Elsevier, New York (1972). https://doi.org/10.1097/00010694-197508000-00022
Google Scholar
Beckingham, L. E., Steefel, C. I., Swift, A. M., Voltolini, M., Yang, L., Anovitz, L. M., Sheets, J. M., Cole, D. R., Kneafsey, T. J., Mitnick, E. H., Zhang, S., Landrot, G., Ajo-Franklin, J. B., DePaolo, D. J., Mito, S., Xue, Z.: Evaluation of accessible mineral surface areas for improved prediction of mineral reaction rates in porous media. Geochim. Cosmochim. Acta 205, 31–49 (2017). https://doi.org/10.1016/j.gca.2017.02.006
Article
Google Scholar
Békri, S., Thovert, J., Adler, P.: Dissolution of porous media. Chem. Eng. Sci. 50(17), 2765–2791 (1995). https://doi.org/10.1016/0009-2509(95)00121-k
Article
Google Scholar
Benioug, M., Golfier, F., Oltean, C., Bues, M. A., Bahar, T., Cuny, J.: An immersed boundary-lattice Boltzmann model for biofilm growth in porous media. Adv. Water Res. 107, 65–82 (2017). https://doi.org/10.1016/j.advwatres.2017.06.009
Article
Google Scholar
Boek, E. S., Zacharoudiou, I., Gray, F., Shah, S. M., Crawshaw, J. P., Yang, J.: Multiphase-flow and reactive-transport validation studies at the pore scale by use of lattice boltzmann computer simulations. SPE J. 22(03), 940–949 (2017). https://doi.org/10.2118/170941-PA
Article
Google Scholar
Carman, P.: Fluid flow through granular beds. Chem. Eng. Res. Des. 75, S32–S48 (1997). https://doi.org/10.1016/s0263-8762(97)80003-2
Article
Google Scholar
Chagneau, A., Claret, F., Enzmann, F., Kersten, M., Heck, S., Madė, B., Schäfer, T.: Mineral precipitation-induced porosity reduction and its effect on transport parameters in diffusion-controlled porous media. Geochem. T 16(1). https://doi.org/10.1186/s12932-015-0027-z (2015)
Chaniotis, A., Poulikakos, D.: High order interpolation and differentiation using b-splines. J. Comput. Phys. 197(1), 253–274 (2004). https://doi.org/10.1016/j.jcp.2003.11.026
Article
Google Scholar
Chatelain, P., Curioni, A., Bergdorf, M., Rossinelli, D., Andreoni, W., Koumoutsakos, P.: Billion vortex particle direct numerical simulations of aircraft wakes. Comput. Methods Appl. Mech. Eng. 197(13-16), 1296–1304 (2008). https://doi.org/10.1016/j.cma.2007.11.016
Article
Google Scholar
Chatelin, R., Poncet, P.: A hybrid grid-particle method for moving bodies in 3D, stokes flow with variable viscosity. SIAM J. Sci. Comput. 35(4), B925–B949 (2013). https://doi.org/10.1137/120892921
Article
Google Scholar
Chatelin, R., Sanchez, D., Poncet, P.: Analysis of the penalized 3D variable viscosity stokes equations coupled to diffusion and transport. ESAIM: Math. Modell. Numer. Anal. 50(2), 565–591 (2016). https://doi.org/10.1051/m2an/2015056
Article
Google Scholar
Chen, L., Kang, Q., Carey, B., Tao, W. Q.: Pore-scale study of diffusion–reaction processes involving dissolution and precipitation using the lattice Boltzmann method. Int. J. Heat Mass Transf. 75, 483–496 (2014). https://doi.org/10.1016/j.ijheatmasstransfer.2014.03.074
Article
Google Scholar
Chou, L., Garrels, R. M., Wollast, R.: Comparative study of the kinetics and mechanisms of dissolution of carbonate minerals. Chem. Geol. 78(3-4), 269–282 (1989). https://doi.org/10.1016/0009-2541(89)90063-6
Article
Google Scholar
Cocle, R., Winckelmans, G., Daeninck, G.: Combining the vortex-in-cell and parallel fast multipole methods for efficient domain decomposition simulations. J. Comput. Phys. 227(21), 9091–9120 (2008). https://doi.org/10.1016/j.jcp.2007.10.010
Article
Google Scholar
Colella, P., Graves, D., Ligocki, T., Modiano, D., Straalen, B. V.: EBChombo software package for Cartesian grid, embedded boundary applications. Tech. Rep., Applied Numerical Algorithms Group, Lawrence Berkeley National Laboratory. Unpublished. Available at http://davis.lbl.gov/APDEC/designdocuments/ebchombo.pdf (2003)
Cottet, G., Koumoutsakos, P.: Vortex methods: theory and practice. IOP Publishing (2001)
Cottet, G. H., Etancelin, J. M., Perignon, F., Picard, C.: High order semi-Lagrangian particle methods for transport equations: numerical analysis and implementation issues. ESAIM: Math. Modell. Numer. Anal. 48(4), 1029–1060 (2014). https://doi.org/10.1051/m2an/2014009
Article
Google Scholar
Cottet, G. H., Poncet, P.: Advances in direct numerical simulations of 3D wall-bounded flows by vortex-in-cell methods. J. Comput. Phys. 193(1), 136–158 (2004). https://doi.org/10.1016/j.jcp.2003.08.025
Article
Google Scholar
Curti, E., Xto, J., Borca, C., Henzler, K., Huthwelker, T., Prasianakis, N.: Modelling ra-baryte nucleation/precipitation kinetics at the pore scale : application to radioactive waste disposal. Eur. J. Mineral. In press (2019)
Deng, H., Molins, S., Trebotich, D., Steefel, C., DePaolo, D.: Pore-scale numerical investigation of the impacts of surface roughness: Upscaling of reaction rates in rough fractures. Geochim. Cosmochim. Acta 239, 374–389 (2018). https://doi.org/10.1016/j.gca.2018.08.005
Article
Google Scholar
Deng, H., Steefel, C., Molins, S., DePaolo, D.: Fracture evolution in multimineral systems: the role of mineral composition, flow rate, and fracture aperture heterogeneity. ACS Earth Space Chem. 2(2), 112–124 (2018). https://doi.org/10.1021/acs.earth.space.chern.7b00130
Article
Google Scholar
El Ossmani, M., Poncet, P.: Efficiency of multiscale hybrid grid-particle vortex methods. Multiscale Model. Simul. 8(5), 1671–1690 (2010). https://doi.org/10.1137/090765006
Article
Google Scholar
Ellis, B., Peters, C., Fitts, J., Bromhal, G., McIntyre, D., Warzinski, R., Rosenbaum, E.: Deterioration of a fractured carbonate caprock exposed to CO2-acidified brine flow. Greenhouse Gas. Sci. Technol. 1(3), 248–260 (2011). https://doi.org/10.1002/ghg.25
Google Scholar
Gazzola, M., Chatelain, P., van Rees, W.M., Koumoutsakos, P.: Simulations of single and multiple swimmers with non-divergence free deforming geometries. J. Comput. Phys. 230(19), 7093–7114 (2011). https://doi.org/10.1016/j.jcp.2011.04.025. http://linkinghub.elsevier.com/retrieve/pii/S0021999111002737
Article
Google Scholar
Golfier, F., Zarcone, C., Bazin, B., Lenormand, R., Lasseux, D., Quintard, M.: On the ability of a darcy-scale model to capture wormhole formation during the dissolution of a porous medium. J. Fluid Mech. 457, 213–254 (2002). https://doi.org/10.1017/S0022112002007735
Article
Google Scholar
Gray, F., Cen, J., Shah, S., Crawshaw, J., Boek, E.: Simulating dispersion in porous media and the influence of segmentation on stagnancy in carbonates. Adv. Water Res. 97, 1–10 (2016). https://doi.org/10.1016/j.advwatres.2016.08.009
Article
Google Scholar
Hirt, C., Amsden, A., Cook, J.: An arbitrary lagrangian-eulerian computing method for all flow speeds. J. Comput. Phys. 14(3), 227–253 (1974). https://doi.org/10.1016/0021-9991(74)90051-5
Article
Google Scholar
Hirt, C., Nichols, B.: Volume of fluid (vof) method for the dynamics of free boundaries. J. Comput. Phys. 39 (1), 201–225 (1981). https://doi.org/10.1016/0021-9991(81)90145-5. http://www.sciencedirect.com/science/article/pii/0021999181901455
Article
Google Scholar
Huang, H., Li, X.: Pore-scale simulation of coupled reactive transport and dissolution in fractures and porous media using the level set interface tracking method. J. Nanjing Univ. (Nat. Sci.) 47(3), 235–251 (2011). http://www.osti.gov/scitech/servlets/purl/1048897
Google Scholar
Huber, C., Shafei, B., Parmigiani, A.: A new pore-scale model for linear and non-linear heterogeneous dissolution and precipitation. Geochim. Cosmochim. Acta 124(0), 109–130 (2014). https://doi.org/10.1016/j.gca.2013.09.003
Article
Google Scholar
Issa, R. I.: Solution of the implicitly discretised fluid flow equations by operator-splitting. J. Comp. Phys. 62(1), 40–65 (1986). https://doi.org/10.1016/0021-9991(86)90099-9
Article
Google Scholar
Jasak, H.: Error analysis and estimation for the finite volume method with applications to fluid flows. Ph.D. thesis, University of London (1996)
Kang, J., Prasianakis, N., Mantzaras, J.: Thermal multicomponent lattice boltzmann model for catalytic reactive flows Physical Review E - Statistical, Nonlinear and Soft Matter Physics 89(6). https://doi.org/10.1103/PhysRevE.89.063310 (2014)
Kang, Q., Lichtner, P. C., Viswanathan, H. S., Abdel-Fattah, A. I.: Pore scale modeling of reactive transport involved in geologic co2 sequestration. Transp. Porous Med. 82(1), 197–213 (2010)
Article
Google Scholar
Kang, Q., Zhang, D., Chen, S.: Simulation of dissolution and precipitation in porous media. J. Geophys. Res. Solid Earth 108(B10), 1–5 (2003). https://doi.org/10.1029/2003jb002504
Article
Google Scholar
Kang, Q., Zhang, D., Chen, S., He, X.: Lattice Boltzmann simulation of chemical dissolution in porous media. Phys. Rev. E 65(3), 036,318 (2002). https://doi.org/10.1103/physreve.65.036318
Article
Google Scholar
Kang, Q., Zhang, D., Chen, S., He, X.: Lattice Boltzmann simulation of chemical dissolution in porous media. Phys. Rev. E 036(3), 318 (2002). https://doi.org/10.1103/physreve.65.036318
Google Scholar
Kozeny, J.: Ueber kapillare Leitung des Wassers im Boden. Sitzungsber Akad. Wiss. Wien (1927)
Lai, P., Moulton, K., Krevor, S.: Pore-scale heterogeneity in the mineral distribution and reactive surface area of porous rocks. Chem. Geol. 411, 260–273 (2015). https://doi.org/10.1016/j.chemgeo.2015.07.010
Article
Google Scholar
Landrot, G., Ajo-Franklin, J. B., Yang, L., Cabrini, S., Steefel, C. I.: Measurement of accessible reactive surface area in a sandstone, with application to CO2 mineralization. Chem. Geol. 318, 113–125 (2012). https://doi.org/10.1016/j.chemgeo.2012.05.010
Article
Google Scholar
Li, L., Peters, C. A., Celia, M. A.: Effects of mineral spatial distribution on reaction rates in porous media. Water Resour. Res. 43(1), W01,419 (2007). https://doi.org/10.1029/2005wr004848
Article
Google Scholar
Li, X., Huang, H., Meakin, P.: Level set simulation of coupled advection-diffusion and pore structure evolution due to mineral precipitation in porous media. Water Resour. Res 44(12). https://doi.org/10.1029/2007wr006742 (2008)
Li, X., Huang, H., Meakin, P.: A three-dimensional level set simulation of coupled reactive transport and precipitation/dissolution. Int. J. Heat Mass Tran. 53(13), 2908–2923 (2010). https://doi.org/10.1016/j.ijheatmasstransfer.2010.01.044
Article
Google Scholar
Lichtner, P.C.: The quasi-stationary state approximation to coupled mass transport and fluid-rock interaction in a porous medium. Geochim. Cosmochim. Acta 52(1), 143–165 (1988). https://doi.org/10.1016/0016-7037(88)90063-4
Article
Google Scholar
Liu, M., Shabaninejad, M., Mostaghimi, P.: Impact of mineralogical heterogeneity on reactive transport modelling. Comput. Geosci. 104, 12–19 (2017). https://doi.org/10.1016/j.cageo.2017.03.020
Article
Google Scholar
Liu, M., Shabaninejad, M., Mostaghimi, P.: Predictions of permeability, surface area and average dissolution rate during reactive transport in multi-mineral rocks. J. Petrol. Sci. Eng. 170, 130–138 (2018). https://doi.org/10.1016/j.petrol.2018.06.010
Article
Google Scholar
Luhmann, A. J., Tutolo, B. M., Bagley, B. C., Mildner, D. F. R., Seyfried, W. E., Saar, M. O.: Permeability, porosity, and mineral surface area changes in basalt cores induced by reactive transport of CO2-rich brine. Water Resour. Res. 53(3), 1908–1927 (2017). https://doi.org/10.1002/2016wr019216
Article
Google Scholar
Luquot, L., Gouze, P.: Experimental determination of porosity and permeability changes induced by injection of CO2 into carbonate rocks. Chem. Geol. 265(1-2), 148–159 (2009). https://doi.org/10.1016/j.chemgeo.2009.03.028
Article
Google Scholar
Maes, J., Geiger, S.: Direct pore-scale reactive transport modelling of dynamic wettability changes induced by surface complexation. Adv. Water Resour. 111, 6–19 (2018). https://doi.org/10.1016/j.advwatres.2017.10.032
Article
Google Scholar
Magni, A., Cottet, G. H.: Accurate, non-oscillatory, remeshing schemes for particle methods. J. Comp. Phys. 231(1), 152–172 (2012). https://doi.org/10.1016/j.jcp.2011.09.005
Article
Google Scholar
Menke, H., Bijeljic, B., Blunt, M.: Dynamic reservoir-condition microtomography of reactive transport in complex carbonates: effect of initial pore structure and initial brine pH. Geochim. Cosmochim. Acta 204, 267–285 (2017). https://doi.org/10.1016/j.gca.2017.01.053
Article
Google Scholar
Miller, K., Vanorio, T., Keehm, Y.: Evolution of permeability and microstructure of tight carbonates due to numerical simulation of calcite dissolution. J. Geophys. Res. Solid Earth 122(6), 4460–4474 (2017). https://doi.org/10.1002/2017jb013972
Article
Google Scholar
Molins, S., Trebotich, D., Arora, B., Steefel, C. I., Deng, H.: Multi-scale model of reactive transport in fractured media: diffusion limitations on rates transport in porous media. https://doi.org/10.1007/s11242-019-01266-2(2019)
Molins, S., Trebotich, D., Miller, G. H., Steefel, C. I.: Mineralogical and transport controls on the evolution of porous media texture using direct numerical simulation. Water Resour. Res. 53(5), 3645–3661 (2017). https://doi.org/10.1002/2016wr020323
Article
Google Scholar
Molins, S., Trebotich, D., Steefel, C. I., Shen, C.: An investigation of the effect of pore scale flow on average geochemical reaction rates using direct numerical simulation. Water Resour. Res 48(3). https://doi.org/10.1029/2011wr011404 (2012)
Molins, S., Trebotich, D., Yang, L., Ajo-Franklin, J. B., Ligocki, T. J., Shen, C., Steefel, C. I.: Pore-scale controls on calcite dissolution rates from flow-through laboratory and numerical experiments. Environ. Sci. Technol. 48(13), 7453–7460 (2014). https://doi.org/10.1021/es5013438
Article
Google Scholar
Monaghan, J.: Extrapolating b splines for interpolation. J. Comput. Phys. 60(2), 253–262 (1985). https://doi.org/10.1016/0021-9991(85)90006-3. http://www.sciencedirect.com/science/article/pii/0021999185900063
Article
Google Scholar
Monaghan, J. J.: Extrapolating B splines for interpolation. J. Comp. Phys. 60(2), 253–262 (1985). https://doi.org/10.1016/0021-9991(85)90006-3
Article
Google Scholar
Noiriel, C., Daval, D.: Pore-Scale geochemical reactivity associated with CO2 Storage: New frontiers at the Fluid–solid interface. Account. Chem. Res. 50(4), 759–768 (2017). https://doi.org/10.1021/acs.accounts.7b00019
Article
Google Scholar
Noiriel, C., Luquot, L., Made, B., Raimbault, L., Gouze, P., van der Lee, J.: Changes in reactive surface area during limestone dissolution: an experimental and modelling study. Chem. Geol. 265(1), 160–170 (2009). https://doi.org/10.1016/j.chemgeo.2009.01.032
Article
Google Scholar
Oltėan, C., Golfier, F., Buės, M. A.: Numerical and experimental investigation of buoyancy-driven dissolution in vertical fracture. J. Geophys. Res. Solid Earth 118(5), 2038–2048 (2013). https://doi.org/10.1002/jgrb.50188
Article
Google Scholar
Oostrom, M., Mehmani, Y., Romero-Gomez, P., Tang, Y., Liu, H., Yoon, H., Kang, Q., Joekar-Niasar, V., Balhoff, M. T., Dewers, T., Tartakovsky, G. D., Leist, E. A., Hess, N. J., Perkins, W. A., Rakowski, C. L., Richmond, M. C., Serkowski, J. A., Werth, C. J., Valocchi, A. J., Wietsma, T. W., Zhang, C.: Pore-scale and continuum simulations of solute transport micromodel benchmark experiments. Computat. Geosci. 20(4), 857–879 (2016). https://doi.org/10.1007/s10596-014-9424-0
Article
Google Scholar
Ovaysi, S., Piri, M.: Pore-scale dissolution of CO2+SO2 in deep saline aquifers. Int J. Greenh. Gas Con. 15, 119–133 (2013). https://doi.org/10.1016/j.ijggc.2013.02.009
Article
Google Scholar
Parmigiani, A., Huber, C., Bachmann, O., Chopard, B.: Pore-scale mass and reactant transport in multiphase porous media flows. J. Fluid Mech. 686, 40–76 (2011). https://doi.org/10.1017/jfm.2011.268
Article
Google Scholar
Pereira-Nunes, J. P., Blunt, M. J., Bijeljic, B.: Pore-scale simulation of carbonate dissolution in micro-CT images. J. Geophys. Res. Solid Earth 121(2), 558–576 (2016). https://doi.org/10.1002/2015jb012117
Article
Google Scholar
Poncet, P.: Topological aspects of three-dimensional wakes behind rotary oscillating cylinders. J. Fluid Mech. 517, 27–53 (2004). https://doi.org/10.1017/S0022112004000588
Article
Google Scholar
Poncet, P.: Finite difference stencils based on particle strength exchange schemes for improvement of vortex methods. J. Turbul. 7, N23 (2006). https://doi.org/10.1080/14685240600595586
Article
Google Scholar
Poncet, P.: Analysis of direct three-dimensional parabolic panel methods. SIAM J. Numer. Anal. 45(6), 2259–2297 (2007). https://doi.org/10.1137/050625849
Article
Google Scholar
Poncet, P.: Analysis of an immersed boundary method for three-dimensional flows in vorticity formulation. J. Comput. Phys. 228(19), 7268–7288 (2009). https://doi.org/10.1016/j.jcp.2009.06.023. http://www.sciencedirect.com/science/article/pii/S0021999109003465
Article
Google Scholar
Poncet, P., Hildebrand, R., Cottet, G. H., Koumoutsakos, P.: Spatially distributed control for optimal drag reduction of the flow past a circular cylinder. J. Fluid Mech. 599, 111–120 (2008). https://doi.org/10.1017/S0022112008000177
Article
Google Scholar
Prasianakis, N., Ansumali, S.: Microflow simulations via the lattice boltzmann method. Commun. Comput. Phys. 9(5), 1128–1136 (2011). https://doi.org/10.4208/cicp.301009.271010s
Article
Google Scholar
Prasianakis, N., Karlin, I., Mantzaras, J., Boulouchos, K.: Lattice boltzmann method with restored galilean invariance. Physical Review E - Statistical, Nonlinear and Soft Matter Physics 79(6). https://doi.org/10.1103/PhysRevE.79.066702 (2009)
Prasianakis, N., Rosén, T., Kang, J., Eller, J., Mantzaras, J., Büchi, F.: Simulation of 3d porous media flows with application to polymer electrolyte fuel cells. Commun. Comput. Phys. 13(3), 851–866 (2013). https://doi.org/10.4208/cicp.341011.310112s
Article
Google Scholar
Prasianakis, N.i., Curti, E., Kosakowski, G., Poonoosamy, J., Churakov, S.V.: Deciphering pore-level precipitation mechanisms. Sci. Rep. 7(1), 13,765 (2017). https://doi.org/10.1038/s41598-017-14142-0
Article
Google Scholar
Prasianakis, N.i., Gatschet, M., Abbasi, A., Churakov, S.V.: Upscaling strategies of porosity-permeability correlations in reacting environments from pore-scale simulations. Geofluids 2018, 1–8 (2018). https://doi.org/10.1155/2018/9260603
Article
Google Scholar
Qian, Y. H., D’Humiėres, D., Lallemand, P.: Lattice BGK models for navier-stokes equation. Europhys. Lett. 17(6), 479–484 (1992). https://doi.org/10.1209/0295-5075/17/6/001
Article
Google Scholar
Rosén, T., Eller, J., Kang, J., Prasianakis, N., Mantzaras, J., Büchi, F.: Saturation dependent effective transport properties of pefc gas diffusion layers. J. Electrochem. Soc. 159(9), F536–F544 (2012). https://doi.org/10.1149/2.005209jes
Article
Google Scholar
Sadhukhan, S., Gouze, P., Dutta, T.: Porosity and permeability changes in sedimentary rocks induced by injection of reactive fluid: a simulation model. J. Hydrol. 450-451, 134–139 (2012). https://doi.org/10.1016/j.jhydrol.2012.05.024. https://linkinghub.elsevier.com/retrieve/pii/S0022169412004003
Article
Google Scholar
Sallès, J., Thovert, J. F., Adler, P. M.: Deposition in porous media and clogging. Chem. Eng. Sci. 48 (16), 2839–2858 (1993). https://doi.org/10.1016/0009-2509(93)80031-K
Article
Google Scholar
Sanchez, D., Hume, L., Chatelin, R., Poncet, P.: Analysis of the 3d non-linear stokes problem coupled to transport-diffusion for shear-thinning heterogeneous microscale flows, applications to digital rock physics and mucociliary clearance. ESAIM: Mathematical Modelling and Numerical Analysis (Under revision)
Saxena, N., Hofmann, R., Alpak, F. O., Berg, S., Dietderich, J., Agarwal, U., Tandon, K., Hunter, S., Freeman, J., Wilson, O. B.: References and benchmarks for pore-scale flow simulated using micro-CT images of porous media and digital rocks. Adv. Water Res. 109, 211–235 (2017). https://doi.org/10.1016/j.advwatres.2017.09.007
Article
Google Scholar
Schneider, C.A., Rasband, W.S., Eliceiri, K.W.: NIH image to ImageJ: 25 years of image analysis. Nat. Methods 9(7), 671–675 (2012). https://doi.org/10.1038/nmeth.2089. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5554542/
Article
Google Scholar
von der Schulenburg, D. A. G., Pintelon, T. R. R., Picioreanu, C., Loosdrecht, M. C. M. V., Johns, M. L.: Three-dimensional simulations of biofilm growth in porous media. AIChE J. 55(2), 494–504 (2009). https://doi.org/10.1002/aic.11674
Article
Google Scholar
Sanchez, D., Hume, L., Chatelin, R., Poncet, P.: Analysis of non-linear Stokes problem coupled to transport-diffusion for shear-thinning heterogeneous microscale flows, applications to digital rock physics and mucociliary clearance. Math. Model. Numer. Anal. 53, 1083–1124 (2019)
Article
Google Scholar
Soulaine, C., Gjetvaj, F., Garing, C., Roman, S., Russian, A., Gouze, P., Tchelepi, H.: The impact of sub-resolution porosity of x-ray microtomography images on the permeability. Transport Porous Med. 113(1), 227–243 (2016). https://doi.org/10.1007/s11242-016-0690-2
Article
Google Scholar
Soulaine, C., Roman, S., Kovscek, A., Tchelepi, H. A.: Mineral dissolution and wormholing from a pore-scale perspective. J. Fluid Mech. 827, 457–483 (2017). https://doi.org/10.1017/jfm.2017.499
Article
Google Scholar
Soulaine, C., Roman, S., Kovscek, A., Tchelepi, H. A.: Pore-scale modelling of multiphase reactive flow. Application to mineral dissolution with production of CO2. J. Fluid Mech. 855, 616–645 (2018). https://doi.org/10.1017/jfm.2018.655
Article
Google Scholar
Soulaine, C., Tchelepi, H. A.: Micro-continuum approach for pore-scale simulation of subsurface processes. Transport Porous Med. 113(3), 431–456 (2016). https://doi.org/10.1007/s11242-016-0701-3
Article
Google Scholar
Starchenko, V., Ladd, A. J. C.: The development of wormholes in laboratory-scale fractures: perspectives from three-dimensional simulations. Water Resour. Res. 54(10), 7946–7959 (2018). https://doi.org/10.1029/2018wr022948
Article
Google Scholar
Starchenko, V., Marra, C. J., Ladd, A. J. C.: Three-dimensional simulations of fracture dissolution. J. Geophys. Res. Solid Earth 121, 6421–6444 (2016). https://doi.org/10.1002/2016JB013321
Article
Google Scholar
Steefel, C. I., Appelo, C. A. J., Arora, B., Jacques, D., Kalbacher, T., Kolditz, O., Lagneau, V., Lichtner, P. C., Mayer, K. U., Meeussen, J. C. L., Molins, S., Moulton, D., Shao, H., VSimu̇nek, J., Spycher, N., Yabusaki, S.B., Yeh, G.T.: Reactive transport codes for subsurface environmental simulation. Computat. Geosci. 19(3), 445–478 (2014). https://doi.org/10.1007/s10596-014-9443-x
Article
Google Scholar
Steefel, C. I., Beckingham, L. E., Landrot, G.: Micro-continuum approaches for modeling pore-scale geochemical processes. Rev. Mineral. Geochem. 80(1), 217–246 (2015). https://doi.org/10.2138/rmg.2015.80.07
Article
Google Scholar
Steefel, C. I., Molins, S., Trebotich, D.: Pore scale processes associated with subsurface CO2 injection and sequestration. Rev. Mineral. Geochem. 77(1), 259–303 (2013). https://doi.org/10.2138/rmg.2013.77.8
Article
Google Scholar
Succi, S.: The lattice Boltzmann equation: for fluid dynamics and beyond. Oxford University Press (2001)
Succi, S., Foti, E., Higuera, F.: Three-dimensional flows in complex geometries with the lattice Boltzmann method. EPL 10(5), 433–438 (1989). https://doi.org/10.1209/0295-5075/10/5/008
Article
Google Scholar
Sweet, R. A.: A parallel and vector variant of the cyclic reduction algorithm. J. Sci. Stat. Comput. 9(4), 761–765 (1988)
Article
Google Scholar
Szymczak, P., Ladd, A. J. C.: Microscopic simulations of fracture dissolution. Geophys. Res. Lett. 31(23), 1–4 (2004). https://doi.org/10.1029/2004gl021297
Article
Google Scholar
Szymczak, P., Ladd, A. J. C.: Wormhole formation in dissolving fractures. J. Geophys. Res. Solid Earth 114(B6), 1–22 (2009). https://doi.org/10.1029/2008jb006122
Article
Google Scholar
Tang, Y., Valocchi, A. J., Werth, C. J., Liu, H.: An improved pore-scale biofilm model and comparison with a microfluidic flow cell experiment. Water Resour. Res. 49(12), 8370–8382 (2013). https://doi.org/10.1002/2013wr013843
Google Scholar
Tartakovsky, A. M., Meakin, P., Scheibe, T. D., West, R. M. E.: Simulations of reactive transport and precipitation with smoothed particle hydrodynamics. J. Comp. Phys. 222(2), 654–672 (2007). https://doi.org/10.1016/j.jcp.2006.08.013
Article
Google Scholar
Trebotich, D., Adams, M. F., Molins, S., Steefel, C. I., Shen, C.: High-resolution simulation of pore-scale reactive transport processes associated with carbon sequestration. Comput. Sci. Eng. 16(6), 22–31 (2014). https://doi.org/10.1109/mcse.2014.77
Article
Google Scholar
Trebotich, D., Graves, D.: An adaptive finite volume method for the incompressible Navier-Stokes equations in complex geometries. Comm. App. Math. Com. Sc. 10(1), 43–82 (2015). https://doi.org/10.2140/camcos.2015.10.43
Article
Google Scholar
Tukoviċ, ž., Jasak, H.: A moving mesh finite volume interface tracking method for surface tension dominated interfacial fluid flow. Comput. Fluids 55, 70–84 (2012). https://doi.org/10.1016/j.compfluid.2011.11.003
Article
Google Scholar
Vilcȧez, J., Morad, S., Shikazono, N.: Pore-scale simulation of transport properties of carbonate rocks using FIB-SEM 3d microstructure: implications for field scale solute transport simulations. J. Nat. Gas Sci. Eng. 42, 13–22 (2017). https://doi.org/10.1016/j.jngse.2017.02.044
Article
Google Scholar
Xu, Z., Huang, H., Li, X., Meakin, P.: Phase field and level set methods for modeling solute precipitation and/or dissolution. Comput. Phys. Commun. 183(1), 15–19 (2012). https://doi.org/10.1016/j.cpc.2011.08.005
Article
Google Scholar
Xu, Z., Meakin, P.: Phase-field modeling of solute precipitation and dissolution. J. Chem. Phys. 014(1), 705 (2008). https://doi.org/10.1063/1.2948949
Google Scholar
Xu, Z., Meakin, P.: Phase-field modeling of two-dimensional solute precipitation/dissolution: Solid fingers and diffusion-limited precipitation. J. Chem. Phys. 044(4), 137 (2011). https://doi.org/10.1063/1.3537973
Google Scholar
Xu, Z., Meakin, P., Tartakovsky, A. M.: Diffuse-interface model for smoothed particle hydrodynamics. Phys. Rev E 79(3). https://doi.org/10.1103/physreve.79.036702 (2009)
Yang, Y., Bruns, S., Stipp, S., Sørensen, H.: Impact of microstructure evolution on the difference between geometric and reactive surface areas in natural chalk. Adv. Water Res. 115, 151–159 (2018). https://doi.org/10.1016/j.advwatres.2018.03.005
Article
Google Scholar
Yoon, H., Valocchi, A.J., Werth, C.J., Dewers, T.: Pore-scale simulation of mixing-induced calcium carbonate precipitation and dissolution in a microfluidic pore network. Water Resour. Res. 48(2). https://doi.org/10.1029/2011wr011192. W02524 (2012)
Zhao, B., MacMinn, C.W., Juanes, R.: Wettability control on multiphase flow in porous media: A benchmark study on current pore-scale modeling approaches. 71st Annual Meeting of the APS Division of Fluid Dynamics. In: Bull. Am. Phys. Soc. American Physical Society. http://meetings.aps.org/Meeting/DFD18/Session/G26.2 (2018)