Skip to main content
Log in

Coarse-scale data assimilation as a generic alternative to localization

  • Original Paper
  • Published:
Computational Geosciences Aims and scope Submit manuscript

Abstract

Coarse-scale data assimilation (DA) with large ensemble size is proposed as a robust alternative to standard DA with localization for reservoir history matching problems. With coarse-scale DA, the unknown property function associated with each ensemble member is upscaled to a grid significantly coarser than the original reservoir simulator grid. The grid coarsening is automatic, ensemble-specific and non-uniform. The selection of regions where the grid can be coarsened without introducing too large modelling errors is performed using a second-generation wavelet transform allowing for seamless handling of non-dyadic grids and inactive grid cells. An inexpensive local-local upscaling is performed on each ensemble member. A DA algorithm that restarts from initial time is utilized, which avoids the need for downscaling. Since the DA computational cost roughly equals the number of ensemble members times the cost of a single forward simulation, coarse-scale DA allows for a significant increase in the number of ensemble members at the same computational cost as standard DA with localization. Fixing the computational cost for both approaches, the quality of coarse-scale DA is compared to that of standard DA with localization (using state-of-the-art localization techniques) on examples spanning a large degree of variability. It is found that coarse-scale DA is more robust with respect to variation in example type than each of the localization techniques considered with standard DA. Although the paper is concerned with two spatial dimensions, coarse-scale DA is easily extendible to three spatial dimensions, where it is expected that its advantage with respect to standard DA with localization will increase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aanonsen, S.I.: Efficient history matching using a multiscale technique. SPE Reser. Eval. Eng. 11(1) (2008). doi:10.2118/92758-PA

  2. Aanonsen, S.I., Nævdal, G., Oliver, D.S., Reynolds, A.C., Vallės, B.: The ensemble Kalman filter in reservoir engineering–a review. Spe J. 14, 393–412 (2009). doi:10.2118/117274-PA

    Article  Google Scholar 

  3. Arroyo, E., Devegowda, D., Datta-Gupta, A., Choe, J.: Streamline-assisted ensemble Kalman filter for rapid and continuous reservoir model updating. SPE Reser. Eval. Eng. 11(6) (2008). doi:10.2118/104255-PA

  4. Axelsson, O.: Iterative Solution Methods. Cambridge University Press, Cambridge (1994)

    Book  Google Scholar 

  5. Aziz, K., Settari, A.: Petroleum Reservoir Simulation. Elsevier Applied Science, New York (1979)

    Google Scholar 

  6. Burrus, S.C., Gopinath, R.A., Guo, H.: Introduction to Wavelets and Wavelet Transforms: A Primer. Prentice-Hall, New Jersey (1998)

    Google Scholar 

  7. Chen, Y.: Personal communication (2015)

  8. Chen, Y., Oliver, D.S.: Cross-covariances and localization for EnKF in multiphase flow data assimilation. Comput. Geosci. 14(4), 579–601 (2010). doi:10.1007/s10596-009-9174-6

    Article  Google Scholar 

  9. Chen, Y., Oliver, D.S.: Ensemble randomized maximum likelihood method as an iterative ensemble smoother. Math. Geosci. 44(1), 1–26 (2012). doi:10.1007/s11004-011-9376-z

    Article  Google Scholar 

  10. Chen, Y., Oliver, D.S.: Levenberg–Marquardt forms of the iterative ensemble smoother for efficient history matching and uncertainty quantification. Comput. Geosci. 17(4), 689–703 (2013). doi:10.1007/s10596-013-9351-5

    Article  Google Scholar 

  11. Chen, Y., Oliver, D.S.: History matching of the Norne full-field model with an iterative ensemble smoother. SPE Reser. Eval. Eng. 17(02), 244–56 (2014). doi:10.2118/164902-PA

    Google Scholar 

  12. Christie, M.A., Blunt, M.J.: Tenth SPE comparative solution project: a comparison of upscaling techniques. SPE Reser. Eval. Eng. 4(4), 308–317 (2001). doi:10.2118/72469-PA

    Google Scholar 

  13. Daubechies, I.: Ten Lectures on Wavelets. Society for Industrial and Applied Mathematics. doi:10.1137/1.9781611970104 (1992)

  14. Deutsch, C.V., Journel, A.G.: GSLIB: Geostatistical Software Library and User’s Guide. In: Applied Geostatistics Series. 2nd edn. Oxford University Press, New York (1998)

    Google Scholar 

  15. Devegowda, D., Arroyo, E., Datta-Gupta, A., Douma, S.G.: Efficient and robust reservoir model updating using ensemble Kalman filter with sensitivity-based covariance localization. SPE Reserv. Simul. Symp. doi:10.2118/106144-MS (2007)

  16. Durlofsky, L.: Upscaling of geocellular models for reservoir flow simulation: A review of recent progress. In: 7th International Forum on Reservoir Simulation Bu̇hl/Baden-Baden, pp. 23–27. Germany (2003)

  17. Ebrahimi, F., Sahimi, M.: Multiresolution wavelet coarsening and analysis of transport in heterogeneous media. Physica A: Stat. Mech. Appl. 316(1–4), 160–188 (2002). doi:10.1016/S0378-4371(02)01199-8

    Article  Google Scholar 

  18. Efendiev, Y., Datta-Gupta, A., Ma, X., Mallick, B.: Efficient sampling techniques for uncertainty quantification in history matching using nonlinear error models and ensemble level upscaling techniques. Water Resour. Res. 45(11) (2009). doi:10.1029/2008WR007039

  19. Emerick, A.A., Reynolds, A.C.: Combining sensitivities and prior information for covariance localization in the ensemble Kalman filter for petroleum reservoir applications. Comput. Geosci 15(2), 251–269 (2011). doi:10.1007/s10596-010-9198-y

    Article  Google Scholar 

  20. Emerick, A.A., Reynolds, A.C.: History matching time-lapse seismic data using the ensemble Kalman filter with multiple data assimilations. Comput. Geosci. 16(3), 639–659 (2012). doi:10.1007/s10596-012-9275-5

    Article  Google Scholar 

  21. Emerick, A.A., Reynolds, A.C.: Ensemble smoother with multiple data assimilation. Comput. Geosci. 55, 3–15 (2013). doi:10.1016/j.cageo.2012.03.011

    Article  Google Scholar 

  22. Emerick, A.A., Reynolds, A.C.: Investigation of the sampling performance of ensemble-based methods with a simple reservoir model. Comput. Geosci. 17(2), 325–350 (2013). doi:10.1007/s10596-012-9333-z

    Article  Google Scholar 

  23. Evensen, G.: Sequential data assimilation with a nonlinear quasi-geostrophic model using Monte Carlo methods to forecast error statistics. J. Geophys. Res. 99(C5), 10,143–10,162 (1994)

    Article  Google Scholar 

  24. Evensen, G., van Leeuwen, P.J.: An ensemble Kalman smoother for nonlinear dynamics. Mon. Weather Rev. 128, 1852–1867 (2000)

    Article  Google Scholar 

  25. Farmer, C.L.: Upscaling: a review. Int. J. Numer. Methods Fluids 40(1–2), 63–78 (2002). doi:10.1002/fld.267

    Article  Google Scholar 

  26. Fossum, K., Mannseth, T.: Parameter sampling capabilities of sequential and simultaneous data assimilation: I. Analytical comparison. Inverse Prob. 30(11), 114,002 (2014). doi:10.1088/0266-5611/30/11/114002

    Article  Google Scholar 

  27. Fossum, K., Mannseth, T.: Parameter sampling capabilities of sequential and simultaneous data assimilation: II. Statistical analysis of numerical results. Inverse Prob. 30(11), 114,003 (2014). doi:10.1088/0266-5611/30/11/114003

    Article  Google Scholar 

  28. Fossum, K., Mannseth, T.: Assessment of ordered sequential data assimilation. Comput. Geosci. 19(4), 821–844 (2015). doi:10.1007/s10596-015-9492-9

    Article  Google Scholar 

  29. Fryzlewicz, P., Timmermans, C.: SHAH: SHape-Adaptive Haar wavelets for image processing. J. Comput. Graph. Stat. (August), 00–00 (2015). doi:10.1080/10618600.2015.1048345

  30. Furrer, R., Bengtsson, T.: Estimation of high-dimensional prior and posterior covariance matrices in Kalman filter variants. J. Multivar. Anal. 98(2), 227–255 (2007). doi:10.1016/j.jmva.2006.08.003

    Article  Google Scholar 

  31. Gaspari, G., Cohn, S.E.: Construction of correlation functions in two and three dimensions. Quar. J. R. Meteorol. Soc. 125(554), 723–757 (1999). doi:10.1002/qj.49712555417

    Article  Google Scholar 

  32. Giles, M.: Multi-level Monte Carlo path simulation. Oper. Res. 56(3), 607–617 (2008). doi:10.1287/opre.1070.0496

    Article  Google Scholar 

  33. Girardi, M., Sweldens, W.: A new class of unbalanced haar wavelets that form an unconditional basis for Lp on general measure spaces. J. Four. Anal. Appl. 3(4), 457–474 (1997). doi:10.1007/BF02649107

    Article  Google Scholar 

  34. Haar, A.: Zur Theorie der orthogonalen Funktionensysteme. Mathematische Annalen 71(1), 38–53 (1911). doi:10.1007/BF01456927

    Article  Google Scholar 

  35. Heinrich, S.: Multilevel Monte Carlo methods. In: Margenov, S., Waṡniewski, J., Yalamov, P. (eds.) Springer Proceedings in Mathematics and Statistics, Lecture Notes in Computer Science, vol. 65, pp 58–67. Springer, Berlin / Heidelberg (2001)

    Google Scholar 

  36. Hoel, H., Law, K.J.H., Tempone, R.: Multilevel ensemble Kalman filtering. SIAM J. Numer. Anal. 54 (3), 1813–1839 (2016). doi:10.1137/15M100955X

    Article  Google Scholar 

  37. Houtekamer, P.L., Mitchell, H.L.: Data assimilation using an ensemble Kalman filter technique. Mon. Weather Rev. 126(3), 796–811 (1998). doi:10.1175/1520-0493(1998)126¡0796:DAUAEK¿2.0.CO;2

    Article  Google Scholar 

  38. Iglesias, M.A.: Iterative regularization for ensemble data assimilation in reservoir models, vol. 19. doi:10.1007/s10596-014-9456-5 (2015)

  39. Iglesias, M.A., Law, K.J.H., Stuart, A.M.: Ensemble Kalman methods for inverse problems. Inverse Prob. 29(4), 045,001 (2013). doi:10.1088/0266-5611/29/4/045001

    Article  Google Scholar 

  40. Iglesias, M.A., Law, K.J.H., Stuart, A.M.: Evaluation of Gaussian approximations for data assimilation in reservoir models. Comput. Geosci. 17(5), 851–885 (2013). doi:10.1007/s10596-013-9359-x

    Article  Google Scholar 

  41. Jansen, M., Oonincx, P.: Second Generation Wavelets and Applications. Springer-Verlag, London (2005). doi:10.1007/1-84628-140-7

    Google Scholar 

  42. Jensen, A., la Cour-Harbo, A.: Ripples in Mathematics: The Discrete Wavelet Transform. Springer-Verlag, Berlin Heidelberg (2001)

    Book  Google Scholar 

  43. Le Gland, F., Monbet, V., Tran, V.D.: Large sample asymptotics for the ensemble Kalman filter. In: Crisan, D., Rozovskii, B. (eds.) The Oxford Handbook of Nonlinear Filtering, pp 598–631. Oxford University Press (2011)

  44. van Leeuwen, P.J., Evensen, G.: Data assimilation and inverse methods in terms of a probabilistic formulation. Mon. Weather Rev. 124(12), 2898–2913 (1996)

    Article  Google Scholar 

  45. Lodoen, O., Omre, H.: Scale-corrected ensemble Kalman filtering applied to production-history conditioning in reservoir evaluation. SPE J. 13(2), 1–34 (2008). doi:10.2118/111374-PA

    Article  Google Scholar 

  46. Mandel, J., Cobb, L., Beezley, J.D.: On the convergence of the ensemble Kalman filter. Appl. Math. 56 (6), 533–41 (2011). doi:10.1007/s10492-011-0031-2

    Article  Google Scholar 

  47. Mannseth, T.: Comparison of five different ways to assimilate data for a simplistic weakly nonlinear parameter estimation problem. Comput. Geosci. 19(4), 791–804 (2015). doi:10.1007/s10596-015-9490-y

    Article  Google Scholar 

  48. Mehrabi, A., Sahimi, M.: Coarsening of heterogeneous media: Application of wavelets. Phys. Rev. Lett. 79(22), 4385–4388 (1997). doi:10.1103/PhysRevLett.79.4385

    Article  Google Scholar 

  49. Radunoviċ, D.P.: Wavelets from Math to Practice. Springer Berlin Heidelberg, Berlin, Heidelberg (2009). doi:10.1007/978-3-642-00614-2

    Book  Google Scholar 

  50. Rasaei, M.R., Sahimi, M.: Upscaling of the permeability by multiscale wavelet transformations and simulation of multiphase flows in heterogeneous porous media. Comput. Geosci. 13(2), 187–214 (2009). doi:10.1007/s10596-008-9111-0

    Article  Google Scholar 

  51. Reza Rasaei, M., Sahimi, M.: Upscaling and simulation of waterflooding in heterogeneous reservoirs using wavelet transformations: application to the SPE-10 model. Transp. Porous Media 72(3), 311–338 (2008). doi:10.1007/s11242-007-9152-1

    Article  Google Scholar 

  52. Sahimi, M., Heidarinasab, A., Dabir, B.: Computer simulation of conduction in heterogeneous materials: application of wavelet transformations. Chem. Eng. Sci. 59(20), 4291–4303 (2004). doi:10.1016/j.ces.2004.06.019

    Article  Google Scholar 

  53. Skjervheim, J.A., Evensen, G.: An ensemble smoother for assisted history matching. In: Proceedings of SPE Reservoir Simulation Symposium, 2003, pp. 1–15. Society of Petroleum Engineers. doi:10.2118/141929-MS (2011)

  54. Strichartz, R.R.: Construction of orthonormal wavelets. In: Benedetto, J.J., Frazier, M.W. (eds.) Wavelets: Mathematics and Applications. CRC Press, Boca Raton (1994)

    Google Scholar 

  55. Sweldens, W.: The lifting scheme: a construction of second generation wavelets. SIAM J. Math. Anal. 29(2), 511–46 (1998). doi:10.1137/S0036141095289051

    Article  Google Scholar 

  56. Sweldens, W., Schrȯder, P.: Building you own wavelets at home. Part I: First generation wavelets. In: Klees, R., Haagmans, R. (eds.) Wavelets in Geosciences, Lecture Notes in Earth Sciences, vol. 90, pp 72–107. Springer, Berlin Heidelberg (2000)

    Google Scholar 

  57. Sweldens, W., Schrȯder, P.: Building you own wavelets at home. Part II: Second generation wavelets. In: Wavelets in Geosciences, vol. 90, pp. 108–130. doi:10.1007/BFb0011094 (2000)

  58. Wang, Y., Li, G., Reynolds, A.C.: Estimation of depths of fluid contacts and relative permeability curves by history matching using iterative ensemble-Kalman smoothers. Spe J. 15(2), 509–525 (2010). doi:10.2118/119056-PA

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kristian Fossum.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fossum, K., Mannseth, T. Coarse-scale data assimilation as a generic alternative to localization. Comput Geosci 21, 167–186 (2017). https://doi.org/10.1007/s10596-016-9602-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10596-016-9602-3

Keywords

Navigation