Skip to main content

Advertisement

Log in

Joint hydrogeophysical inversion: state estimation for seawater intrusion models in 3D

  • Original Paper
  • Published:
Computational Geosciences Aims and scope Submit manuscript

Abstract

Seawater intrusion (SWI) is a complex process, where 3D modeling is often necessary in order to monitor and manage the affected aquifers. Here, we present a synthetic study to test a joint hydrogeophysical inversion approach aimed at solving the inverse problem of estimating initial and current saltwater distribution. First, we use a 3D groundwater model for variable density flow based on discretized flow and solute mass balance equations. In addition to the groundwater model, a 3D geophysical model was developed for direct current resistivity imaging and inversion. The objective function of the coupled problem consists of data misfit and regularization terms as well as a coupling term that relates groundwater and geophysical states. We present a novel approach to solve the inverse problem using an alternating direction method of multipliers (ADMM) to minimize this coupled objective function. ADMM enables to treat the groundwater and geophysical part separately and thus use the existing software with minor changes. To further reduce the computational cost, the sensitivities are derived analytically for the discretized system of equations, which allows us to efficiently compute the gradients in the minimization procedure. The method was tested on different synthetic scenarios with groundwater and geophysical data represented by solute mass fraction data and direct current resistivity data. With the ADMM approach, we were able to obtain better estimates for the solute distribution compared to just considering each data separately, solving the problem with a simple coupled approach or by a direct substitution of the coupling constraint.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abarca, E., Carrera, J., Sanchez-Vila, J., Dentz, M.: Anisotropic dispersive Henry problem. Adv. Water Resour. 30(4), 913–926 (2007)

    Article  Google Scholar 

  2. Ackerer, P., Younes, A., Mancip, M.: A new coupling algorithm for density-driven flow in porous media. Geophys. Res. Lett. 30(12) (2004)

  3. Archie, G.E.: The electrical resistivity log as an aid in determining some reservoir characteristics. Trans. AIME 14, 54–62 (1942)

    Article  Google Scholar 

  4. Barlow, P.M., Reichard, E.G.: Saltwater intrusion in coastal regions of North America. Hydrogeol. J. 18 (1), 247–260 (2010)

    Article  Google Scholar 

  5. Bauer-Gottwein, P., Gondwe, B.N., Christiansen, L., Herckenrath, D., Kgotlhang, L., Zimmermann, S.: Hydrogeophysical exploration of three-dimensional salinity anomalies with the time-domain electromagnetic method (TDEM). J. Hydrol. 380(3–4) (2010)

  6. Bear, J., Cheng, A.D., Sorek, S., Ouazar, D., Herrera, I.: Seawater intrusions in coastal aquifers: concepts, methods and practices. Springer, Netherlands (1999)

    Book  Google Scholar 

  7. Beaujean, J., Nguyen, F., Kemna, A., Antonsson, A., Engesgaard, P.: Calibration of seawater intrusion models: Inverse parameter estimation using surface electrical resistivity tomography and borehole data. Water Resour. Res. 50(8), 6828–6849 (2014)

    Article  Google Scholar 

  8. Boyd, S., Parikh, N., Chu, E., Peleato, B., Eckstein, J.: Distributed optimization and statistical learning via the alternating direction method of multipliers. Found. Trends Mach. Learn. 3(1), 1–122 (2011)

    Article  Google Scholar 

  9. Carrera, J., Hidalgo, J.J., Slooten, L.J., Vázquez-Suñé, E.: Computational and conceptual issues in the calibration of seawater intrusion models. Hydrogeol. J. 18(1), 131–145 (2010)

    Article  Google Scholar 

  10. Celia, M.A.: An Eulerian-Lagrangian localized adjoint method for the advection-diffusion equation. Adv. Water Resour. 13(4), 187–206 (1990)

    Article  Google Scholar 

  11. Commer, M., Newman, G.A.: Three-dimensional controlled-source electromagnetic and magnetotelluric joint inversion. Geophys. J. Int. 178(3), 1305–1316 (2009)

    Article  Google Scholar 

  12. Commer, M., Kowalsky, M.B., Doetsch, J., Newman, G.A., Finsterle, S.: MPiTOUGH2: a parallel parameter estimation framework for hydrological and hydrogeophysical applications. Comput. Geosci. 65, 127–135 (2014)

    Article  Google Scholar 

  13. Comte, J.C., Banton, O.: Cross–validation of geo–electrical and hydrogeological models to evaluate seawater intrusion in coastal aquifers. Geophys. Res. Lett. 34(10) (2007)

  14. Kolditz, O., Ratke, R., Diersch, H.J.G., Zielke, W.: Coupled groundwater flow and transport: 1. Verification of variable density flow and transport models. Adv. Water Resour. 21(1), 27–46 (1998)

    Article  Google Scholar 

  15. Deng, W., Yin, W.: On the global and linear convergence of the generalized alternating direction method of multipliers. J. Sci. Comput. 1–28 (2012)

  16. Doherty, J.E., Hunt, R.J., Tonkin, M.J.: Approaches to highly parameterized inversion: a guide to using PEST for model-parameter and predictive-uncertainty analysis. US Department of the Interior, US Geological Survey (2011)

    Google Scholar 

  17. Essink, G.O.: Modeling three-dimensional density dependent groundwater flow at the island of Texel, The Netherlands. Coastal Aquifer Management-Monitoring, Modeling, and Case Studies (2003)

  18. Farquharson, C.G., Oldenburg, D.W.: A comparison of automatic techniques for estimating the regularization parameter in non-linear inverse problems. Geophys. J. Int. 156(3), 411–425 (2004)

    Article  Google Scholar 

  19. Fitterman, D.W.: Mapping saltwater intrusion in the Biscayne Aquifer, Miami-Dade County, Florida using transient electromagnetic sounding. J. Environ. Eng. Geophys. 19(1), 33–43 (2014)

    Article  Google Scholar 

  20. Fowler, D.E., Moysey, S.M.J.: Estimation of aquifer transport parameters from resistivity monitoring data within a coupled inversion framework. J. Hydrol. 409(1), 545–554 (2011)

    Article  Google Scholar 

  21. Ghadimi, E., Teixeira, A., Shames, I., Johansson, M.: Optimal parameter selection for the alternating direction method of multipliers (ADMM): quadratic problems. IEEE Trans. Autom. Control 60(3), 644–658 (2015)

    Article  Google Scholar 

  22. Haber, E., Gazit, M.H.: Model fusion and joint inversion. Surv. Geophys. 34(5), 675–695 (2013)

    Article  Google Scholar 

  23. Haber, E.: Computational methods in geophysical electromagnetics, p 1. SIAM (2014)

  24. Hansen, P.C.: Discrete inverse problems: insight and algorithms, p 7. SIAM (2010)

  25. Hem, J.D.: Study and interpretation of the chemical characteristics of natural water. Department of the Interior, US Geological Survey (1985)

  26. Henry, H.R.: Interfaces between salt water and fresh water in coastal aquifers. US Geological Survey Water-Supply Paper, Sea Water in Coastal Aquifers, pp C35–C70 (1964)

    Google Scholar 

  27. Herckenrath, D., Odlum, N., Nenna, V., Knight, R., Auken, E., Bauer-Gottwein, P.: Calibrating a salt water intrusion model with time-domain electromagnetic data. Groundwater 51(3), 385–397 (2013)

    Google Scholar 

  28. Hermans, T., Vandenbohede, A., Lebbe, L., Martin, R., Kemna, A., Beaujean, J., Nguyen, F.: Imaging artificial salt water infiltration using electrical resistivity tomography constrained by geostatistical data. J. Hydrol. 438, 168–180 (2012)

    Article  Google Scholar 

  29. Hinnell, A.C., Ferré, T. P.A., Vrugt, J.A., Huisman, J.A., Moysey, S., Rings, J., Kowalsky, M.B.: Improved extraction of hydrologic information from geophysical data through coupled hydrogeophysical inversion. Water Resour. Res. 46(4) (2010)

  30. Irving, J., Singha, K.: Stochastic inversion of tracer test and electrical geophysical data to estimate hydraulic conductivities. Water Resour. Res. 46(11) (2010)

  31. Jardani, A., Revil, A., Dupont, J.P.: Stochastic joint inversion of hydrogeophysical data for salt tracer test monitoring and hydraulic conductivity imaging. Adv. Water Resour. 52, 62–77 (2013)

    Article  Google Scholar 

  32. Kacimov, A.R., Sherif, M.M., Perret, J.S., Al-Mushikhi, A.: Control of sea-water intrusion by salt-water pumping: coast of Oman. Hydrogeol. J. 17(3), 541–558 (2009)

    Article  Google Scholar 

  33. Kemna, A., Binley, A., Day-Lewis, F., Englert, A., Tezkan, B., Vanderborght, J., Winship, P., et al.: Solute transport processes, pp 117–159. Springer, Dordrecht (2006)

    Google Scholar 

  34. Konikow, L.F., Goode, D.J., Hornberger, G.Z.: A three-dimensional method-of-characteristics solute-transport model (MOC3D). USGS Water Resources Investigations (1996)

    Google Scholar 

  35. Langevin, C.D., Guo, W.: MODFLOW /MT3DMS–based simulation of variable density ground water flow and transport. Groundwater 44(3), 339–351 (2006)

    Article  Google Scholar 

  36. Langevin, C.D., Thorne, D.A., Guo, W.: SEAWAT Version4; A computer based program for simulation of multispecies solute and heat transport. USGS. Techniques and Methods Book 6, Chapter A22. Virginia (2008)

  37. Langevin, C.D., Zygnerski, M.: Effect of Sea-Level Rise on Salt Water Intrusion near a Coastal Well Field in Southeastern Florida. Groundwater. Case Study 51(5), 781–803 (2012)

    Article  Google Scholar 

  38. Medina, A., Carrera, J.: Coupled estimation of flow and solute transport parameters. Water Resour. Res. 32(10), 3063–3076 (1996)

    Article  Google Scholar 

  39. Mills, T., Hoekstra, P., Blohm, M., Evans, L.: Time domain electormagnetic soundings for mapping sea-water intrusion in Monterey County, California. Groundwater 26(6), 771–782 (1988)

    Article  Google Scholar 

  40. Monego, M., Cassiani, G., Deiana, R., Putti, M., Passadore, G., Altissimo, L.: A tracer test in a shallow heterogeneous aquifer monitored via time-lapse surface electrical resistivity tomography. Geophysics 75(4), WA61–WA73 (2010)

    Article  Google Scholar 

  41. Neilson-Welch, L., Smith, L.: Saline water intrusion adjacent to the Fraser River, Richmond, British Columbia. Can. Geotech. J. 38(1), 67–82 (2001)

    Article  Google Scholar 

  42. Nenna, V., Herckenrath, D., Knight, R., Odlum, N., McPhee, D.: Application and evaluation of electromagnetic methods for imaging saltwater intrusion in coastal aquifers: Seaside Groundwater Basin, California. Geophysics 78(2), 77–88 (2013)

    Article  Google Scholar 

  43. Nguyen, F., Kemna, A., Antonsson, A., Engesgaard, P., Kuras, O., Ogilvy, R., Pulido-Bosch, A.: Characterization of seawater intrusion using 2D electrical imaging. Near Surf. Geophys. 7(5–6), 377–390 (2009)

    Google Scholar 

  44. Nishihara, R., Lessard, L., Recht, B., Packard, A., Jordan, M.I. A general analysis of the convergence of ADMM. arXiv preprint arXiv:1502.02009 (2015)

  45. Nocedal, J., Wright, S.: Numerical optimization. Springer Science and Business Media (2006)

  46. Poeter, E.P., Hill, M.C., Banta, E.R., Mehl, S., Christensen, S.: Ucode 2005 and six other computer codes for universal sensitivity analysis, calibration, and uncertainty evaluation: US geological survey techniques and methods 6-A11. US Geological Survey (2005)

  47. Pidlisecky, A., Haber, E., Knight, R.: RESINVM3D: A 3D resistivity inversion package. Geophysics 72 (2), H1–H10 (2007)

    Article  Google Scholar 

  48. Pollock, D., Cirpka, O.A.: Fully coupled hydrogeophysical inversion of a laboratory salt tracer experiment monitored by electrical resistivity tomography. Water Resour. Res. 84(1) (2012)

  49. Putti, M., Paniconi, C.: Picard and Newton linearization for the coupled model of saltwater intrusion in aquifers. Adv. Water Resour. 18(3), 159–170 (1995)

    Article  Google Scholar 

  50. Douglas, J., Russel, F.: Numerical methods for convection-dominated diffusion problems based on combining the method of characteristics with finite element or finite difference procedures. SIAM J. Numer. Anal. 19(5), 871–885 (1982)

    Article  Google Scholar 

  51. Russell, F., Celia, M.: An overview of research on Eulerian-Lagrangian localized adjoint methods (ELLAM). Adv. Water Resour. 25(8), 1215–1231 (2002)

    Article  Google Scholar 

  52. Sanford, W.E., Pope, J.P.: Current challenges using models to forecast seawater intrusion: lessons from the Eastern Shore of Virginia, USA. Hydrogeol. J. 18(1), 73–93 (2010)

    Article  Google Scholar 

  53. Scales, J.A., Tenorio, L.: Prior information and uncertainty in inverse problems. Geophysics 66(2), 389–397 (2001)

    Article  Google Scholar 

  54. Sorek, S., Borisov, V.: Modified Eulerian–Lagrangian formulation for hydrodynamic modeling. J. Comput. Phys. 231(8), 3083–3100 (2011)

    Article  Google Scholar 

  55. Trabelsi, F., Mammou, A.B., Tarhouni, J., Piga, C., Ranieri, G.: Delineation of saltwater intrusion zones using the time domain electromagnetic method: the Nabeul–Hammamet coastal aquifer case study (NE Tunisia). Hydrol. Process. 27(14), 2004–2020 (2013)

    Article  Google Scholar 

  56. Vogel, C.R.: Computational methods for inverse problems, p 23. SIAM (2002)

  57. Wohlberg, B., Tartakovsky, D.M., Dentz, M.: Linearized functional minimization for inverse modeling. In: 19th international conference on water resources. Los Alamos National Laboratory (United States), Funding organization, DOE/LANL (United States) (2012)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Klara Steklova.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Steklova, K., Haber, E. Joint hydrogeophysical inversion: state estimation for seawater intrusion models in 3D. Comput Geosci 21, 75–94 (2017). https://doi.org/10.1007/s10596-016-9595-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10596-016-9595-y

Keywords

Navigation