Skip to main content
Log in

A unified formulation for generalized oilfield development optimization

  • Original Paper
  • Published:
Computational Geosciences Aims and scope Submit manuscript

Abstract

Oilfield development involves several key decisions, including the number, type (injection/production), location, drilling schedule, and operating control trajectories of the wells. Without considering the coupling between these decision variables, any optimization problem formulation is bound to find suboptimal solutions. This paper presents a unified formulation for oilfield development optimization that seeks to simultaneously optimize these decision variables. We show that the source/sink term of the governing multiphase flow equations includes all the above decision variables. This insight leads to a novel and unified formulation of the field development optimization problem that considers the source/sink term in reservoir simulation equations as optimization decision variables. Therefore, a single optimization problem is formulated to simultaneously search for optimal decision variables by determining the complete dynamic form of the source/sink terms. The optimization objective function is the project net present value (NPV), which involves discounted revenue from oil production, operating costs (e.g. water injection and recycling), and capital costs (e.g., cost of drilling wells). A major difficulty after formulating the generalized field development optimization problem is finding an efficient solution approach. Since the total number of cells in a reservoir model far exceeds the number of cells that are intersected by wells, the source/sink terms tend to be sparse. In fact, the drilling cost in the NPV objective function serves as a sparsity-promoting penalty to minimize the number of wells while maximizing the NPV. Inspired by this insight, we solve the optimization problem using an efficient gradient-based method based on recent algorithmic developments in sparse reconstruction literature. The gradients of the NPV function with respect to the source/sink terms is readily computed using well-established adjoint methods. Numerical experiments are presented to evaluate the feasibility and performance of the generalized field development formulation for simultaneous optimization of the number, location, type, controls, and drilling schedule of the wells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Almeida, L.F., Tupac, Y.J., Pacheco, M.A.C., Vellasco, M.M.B.R., Lazo, J.G.L., et al.: Evolutionary optimization of smart-wells control under technical uncertainties. In: Latin American & Caribbean Petroleum Engineering Conference, Society of Petroleum Engineers (2007)

  2. Bach, F., Jenatton, R., Mairal, J., Obozinski, G.: Optimization with sparsity-inducing penalties. Foundations and Trends\({\circledR }\), in Machine Learning 4(1), 1–106 (2012)

    Article  Google Scholar 

  3. Bangerth, W., Klie, H., Wheeler, M., Stoffa, P., Sen, M.: On optimization algorithms for the reservoir oil well placement problem. Comput. Geosci. 10(3), 303–319 (2006)

    Article  Google Scholar 

  4. Baraniuk, R.G.: Compressive sensing. IEEE Signal Process. Mag. 24(4) (2007)

  5. Barzilai, J., Borwein, J.M.: Two-point step size gradient methods. IMA J. Numer. Anal. 8(1), 141–148 (1988)

    Article  Google Scholar 

  6. Beck, A., Teboulle, M.: A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM J. Imag. Sci. 2(1), 183–202 (2009)

    Article  Google Scholar 

  7. Beckner, B., Song, X.: Field development planning using simulated annealing: Optimal economic well scheduling and placement. In: Society of Petroleum Engineers. Annual Technical Conference, pp 209–221 (1995)

  8. Boyd, S., Vandenberghe, L.: Convex Optimization. Cambridge University Press (2004)

  9. Brouwer, D.R.: Dynamic water flood optimization with smart wells using optimal control theory. Delft University of Technology (2004)

  10. Bruck, R.E.: On the weak convergence of an ergodic iteration for the solution of variational inequalities for monotone operators in Hilbert space. J. Math. Anal. Appl. 61(1), 159–164 (1977)

    Article  Google Scholar 

  11. Candès, E.J., Wakin, M.B.: An introduction to compressive sampling. IEEE Signal Process. Mag. 25(2), 21–30 (2008)

    Article  Google Scholar 

  12. Centilmen, B., Ertekin, T., Grader, A.: Applications of neural networks in multiwell field development. In: SPE Annual Technical Conference (1999)

  13. Chartrand, R.: Exact reconstruction of sparse signals via nonconvex minimization. IEEE Signal Process. Mag. 14(10), 707–710 (2007)

    Article  Google Scholar 

  14. Chartrand, R., Yin, W: Iteratively reweighted algorithms for compressive sensing. In: IEEE International Conference on Acoustics, Speech, and Signal Processing, 2008. ICASSP 2008, pp 3869–3872. IEEE (2008)

  15. Combettes, P.L., Pesquet, J.C.: Proximal splitting methods in signal processing. In: Fixed-Point Algorithms for Inverse Problems in Science and Engineering, pp 185–212. Springer (2011)

  16. Combettes, P.L., Wajs, V.R.: Signal recovery by proximal forward-backward splitting. Multiscale Modeling & Simulation 4(4), 1168–1200 (2005)

    Article  Google Scholar 

  17. Dai, Y.H., Liao, L.Z.: R-linear convergence of the barzilai and borwein gradient method. IMA J. Numer. Anal. 22(1), 1–10 (2002)

    Article  Google Scholar 

  18. Daubechies, I., Defrise, M., De Mol, C.: An iterative thresholding algorithm for linear inverse problems with a sparsity constraint. Commun. Pure Appl. Math. 57(11), 1413–1457 (2004)

    Article  Google Scholar 

  19. Ding, S., Jiang, H., Li, J., Tang, G.: Optimization of well placement by combination of a modified particle swarm optimization algorithm and quality map method. Comput. Geosci. 18(5), 747–762 (2014)

    Article  Google Scholar 

  20. Donoho, D.L.: Compressed sensing. IEEE Trans. Inf. Theory 52(4), 1289–1306 (2006)

    Article  Google Scholar 

  21. Echeverría Ciaurri, D., Isebor, O.J., Durlofsky, L.J.: Application of derivative-free methodologies to generally constrained oil production optimization problems. Procedia Comput. Sci. 1(1), 1301–1310 (2010)

    Article  Google Scholar 

  22. Emerick, A.A., Silva, E., Messer, B., Almeida, L.F., Szwarcman, D., Pacheco, M.A.C., Vellasco, M.M.B.R., et al.: Well placement optimization using a genetic algorithm with nonlinear constraints. In: SPE Reservoir Simulation Symposium. Society of Petroleum Engineers (2009)

  23. Fletcher, R.: The Barzilai Borwein method-steepest descent resurgent. In: Report in the International Workshop on Optimization and Control with Applications. Erice, Italy (2001)

  24. Forouzanfar, F., Reynolds, A.: Joint optimization of number of wells, well locations and controls using a gradient-based algorithm. Chem. Eng. Res. Des. (2013)

  25. Hale, E.T., Yin, W., Zhang, Y.: A fixed-point continuation method for l1-regularized minimization with applications to compressed sensing. CAAM TR07-07, Rice University (2007)

  26. Humphries, T.D., Haynes, R.D.: Joint optimization of well placement and control for nonconventional well types. arxiv preprint arxiv:14094369 (2014)

  27. Humphries, T.D., Haynes, R.D., James, L.A.: Simultaneous and sequential approaches to joint optimization of well placement and control. Comput. Geosci. 1–16 (2013)

  28. Humphries, T.D., Haynes, R.D., James, L.A.: Simultaneous and sequential approaches to joint optimization of well placement and control. Comput. Geosci. 18(3-4), 433–448 (2014)

    Article  Google Scholar 

  29. Isebor, O.J., Durlofsky, L.J., Ciaurri, D.E.: A derivative-free methodology with local and global search for the constrained joint optimization of well locations and controls. Comput. Geosci., pp. 1–20 (2013)

  30. Isebor, O.J., Durlofsky, L.J., Ciaurri, D.E.: A derivative-free methodology with local and global search for the constrained joint optimization of well locations and controls. Comput. Geosci. 18(3-4), 463–482 (2014)

    Article  Google Scholar 

  31. Jansen, J.D.: A systems description of flow through porous media. Springer (2013)

  32. Li, L., Jafarpour, B.: A variable-control well placement optimization for improved reservoir development. Comput. Geosci. 16(4), 871–889 (2012)

    Article  Google Scholar 

  33. Li, L., Jafarpour, B., Mohammad-Khaninezhad, M.R.: A simultaneous perturbation stochastic approximation algorithm for coupled well placement and control optimization under geologic uncertainty. Comput. Geosci. 17(1), 167–188 (2013)

    Article  Google Scholar 

  34. Lie, K.A., Krogstad, S., Ligaarden, I.S., Natvig, J.R., Nilsen, H.M., Skaflestad, B.: Open-source matlab implementation of consistent discretisations on complex grids. Comput. Geosci. 16(2), 297–322 (2012)

    Article  Google Scholar 

  35. Luenberger, D.G., Ye, Y.: Linear and nonlinear programming, vol. 116. Springer (2008)

  36. Montes, G., Bartolome, P., Udias, A.L., et al.: The use of genetic algorithms in well placement optimization. In: SPE Latin American and Caribbean Petroleum Engineering Conference. Society of Petroleum Engineers (2001)

  37. Navabi, S., Khaninezhad, R., Jafarpour, B.: A generalized formulation for oilfield development optimization (2015)

    Google Scholar 

  38. Nesterov, Y., et al.: Gradient Methods for Minimizing Composite Objective Function. Tech. rep., UCL (2007)

  39. Oliver, D.S., Chen, Y.: Recent progress on reservoir history matching: A review. Comput. Geosci. 15(1), 185–221 (2011)

    Article  Google Scholar 

  40. Oliver, D.S., Reynolds, A.C., Liu, N.: Inverse Theory for Petroleum Reservoir Characterization and History Matching. Cambridge University Press (2008)

  41. Onwunalu, J.E., Durlofsky, L.J.: Application of a particle swarm optimization algorithm for determining optimum well location and type. Comput. Geosci. 14(1), 183–198 (2010)

    Article  Google Scholar 

  42. Parikh, N., Boyd, S.: Proximal algorithms. Found. Trends Optim. 1(3), 123–231 (2013)

    Google Scholar 

  43. Parikh, N., Boyd, S.P., et al.: Proximal algorithms. Found. Trends Optim. 1(3), 127–239 (2014)

    Article  Google Scholar 

  44. Passty, G.B.: Ergodic convergence to a zero of the sum of monotone operators in Hilbert space. J. Math. Anal. Appl. 72(2), 383–390 (1979)

    Article  Google Scholar 

  45. Raydan, M.: On the Barzilai and Borwein choice of steplength for the gradient method. IMA J. Numer. Anal. 13(3), 321–326 (1993)

    Article  Google Scholar 

  46. Saad, Y., Van Der Vorst, H.A.: Iterative solution of linear systems in the 20th century. J. Comput. Appl. Math. 123(1), 1–33 (2000)

    Article  Google Scholar 

  47. Sarma, P., Durlofsky, L.J., Aziz, K., Chen, W.H.: Efficient real-time reservoir management using adjoint-based optimal control and model updating. Comput. Geosci. 10(1), 3–36 (2006)

    Article  Google Scholar 

  48. Shirangi, M.G., Durlofsky, L.J., et al.: Closed-loop field development under uncertainty by use of optimization with sample validation. SPE J. (2015)

  49. Shu, T., Krunz, M., Vrudhula, S.: Joint optimization of transmit power-time and bit energy efficiency in cdma wireless sensor networks. IEEE Trans. Wirel. Commun. 5(11), 3109–3118 (2006)

    Article  Google Scholar 

  50. Spall, J.C.: Multivariate stochastic approximation using a simultaneous perturbation gradient approximation. IEEE Trans. Autom. Control 37(3), 332–341 (1992)

    Article  Google Scholar 

  51. Spall, J.C., Hill, S.D., Stark, D.R.: Theoretical framework for comparing several stochastic optimization approaches. In: Probabilistic and Randomized Methods for Design under Uncertainty, pp 99–117. Springer (2006)

  52. Turlach, B.A., Venables, W.N., Wright, S.J.: Simultaneous variable selection. Technometrics 47(3), 349–363 (2005)

    Article  Google Scholar 

  53. Van Essen, G., Van den Hof, P., Jansen, J.D., et al.: Hierarchical long-term and short-term production optimization. SPE J. 16(01), 191–199 (2011)

    Article  Google Scholar 

  54. Vlemmix, S., Joosten, G.J., Brouwer, R., Jansen, J.D., et al.: Adjoint-based well trajectory optimization. In: EUROPEC/EAGE Conference and Exhibition. Society of Petroleum Engineers (2009)

  55. Wang, C., Li, G., Reynolds, A.C., et al.: Optimal well placement for production optimization. In: Eastern Regional Meeting. Society of Petroleum Engineers (2007)

  56. Wright, S.J., Nowak, R.D., Figueiredo, M.A.: Sparse reconstruction by separable approximation. IEEE Trans. Signal Process. 57(7), 2479–2493 (2009)

    Article  Google Scholar 

  57. Yuan, M., Lin, Y.: Model selection and estimation in regression with grouped variables. J. R. Stat. Soc. Ser. B Stat Methodol. 68(1), 49–67 (2006)

    Article  Google Scholar 

  58. Zandvliet, M., Handels, M., van Essen, G., Brouwer, R., Jansen, J.D., et al.: Adjoint-based well-placement optimization under production constraints. SPE J. 13(04), 392–399 (2008)

    Article  Google Scholar 

  59. Zandvliet, M.J.: Model-Based Lifecycle Optimization of Well Locations and Production Settings in Petroleum Reservoirs. Delft University of Technology, TU Delft (2008)

    Google Scholar 

  60. Zhang, K., Li, G., Reynolds, A.C., Yao, J., Zhang, L.: Optimal well placement using an adjoint gradient. J. Pet. Sci. Eng. 73(3), 220–226 (2010)

    Article  Google Scholar 

  61. Zhao, P., Rocha, G., Yu, B.: The composite absolute penalties family for grouped and hierarchical variable selection. Ann. Stat., 3468–3497 (2009)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Behnam Jafarpour.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Navabi, S., Khaninezhad, R. & Jafarpour, B. A unified formulation for generalized oilfield development optimization. Comput Geosci 21, 47–74 (2017). https://doi.org/10.1007/s10596-016-9594-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10596-016-9594-z

Keywords

Navigation