Skip to main content

Advertisement

SpringerLink
  • Computational Geosciences
  • Journal Aims and Scope
  • Submit to this journal
Robust simulation of sharp-interface models for fast estimation of CO2 trapping capacity in large-scale aquifer systems
Download PDF
Your article has downloaded

Similar articles being viewed by others

Slider with three articles shown per slide. Use the Previous and Next buttons to navigate the slides or the slide controller buttons at the end to navigate through each slide.

Multiresolution coupled vertical equilibrium model for fast flexible simulation of CO2 storage

28 September 2018

Olav Møyner & Halvor Møll Nilsen

Predicting plume spreading during CO2 geo-sequestration: benchmarking a new hybrid finite element–finite volume compositional simulator with asynchronous time marching

23 October 2020

Qi Shao, Stephan Matthai, … Lutz Gross

Estimation of reduced pressure buildup due to brine seepage using a convolution technique

16 July 2019

Sarah E. Gasda & Ivar Aavatsmark

Numerical simulation of aquifer thermal energy storage using surface-based geologic modelling and dynamic mesh optimisation

08 May 2022

G. Regnier, P. Salinas, … M. D. Jackson

Benchmarking of reactive transport codes for 2D simulations with mineral dissolution–precipitation reactions and feedback on transport parameters

19 November 2018

J. Poonoosamy, C. Wanner, … G. Kosakowski

Reactive transport modeling in heterogeneous porous media with dynamic mesh optimization

18 November 2020

A. Yekta, P. Salinas, … M. R. Soltanian

Assessment of chemo-mechanical impacts of CO2 sequestration on the caprock formation in Farnsworth oil field, Texas

29 July 2022

Benjamin Adu-Gyamfi, William Ampomah, … Samuel Acheampong

Vertically integrated dual-continuum models for CO2 injection in fractured geological formations

12 January 2019

Yiheng Tao, Bo Guo, … Michael A. Celia

The OGS-Eclipse code for simulation of coupled multiphase flow and geomechanical processes in the subsurface

12 May 2020

Katharina Benisch, Wenqing Wang, … Sebastian Bauer

Download PDF
  • ORIGINAL PAPER
  • Open Access
  • Published: 17 December 2015

Robust simulation of sharp-interface models for fast estimation of CO2 trapping capacity in large-scale aquifer systems

  • Halvor Møll Nilsen1,
  • Knut-Andreas Lie1 &
  • Odd Andersen  ORCID: orcid.org/0000-0002-2245-95121,2 

Computational Geosciences volume 20, pages 93–113 (2016)Cite this article

  • 1079 Accesses

  • 27 Citations

  • Metrics details

Abstract

Modeling geological carbon storage represents a new and substantial challenge for the subsurface geosciences. To increase understanding and make good engineering decisions, containment processes and large-scale storage operations must be simulated in a thousand-year perspective. Large differences in spatial and temporal scales make it prohibitively expensive to compute the fate of injected CO2 using traditional 3D simulators. Instead, accurate forecast can be computed using simplified models that are adapted to the specific setting of the bouyancy-driven migration of the light fluid phase. This paper presents a family of vertically integrated models for studying the combined large-scale and long-term effects of structural, residual, and solubility trapping of CO2. The models are based on an assumption of a sharp interface separating CO2 and brine and can provide a detailed inventory of the injected CO2 volumes over periods of thousands of years within reasonable computational time. To be compatible with simulation tools used in industry, the models are formulated in a black-oil framework. The models are implemented in MRST-co2lab, which is an open community software developed especially to study and optimize large-scale, long-term geological storage of CO2. The resulting simulators are fully implicit and handle input from standard geomodeling tools.

Download to read the full article text

Working on a manuscript?

Avoid the common mistakes

References

  1. Class, H., Ebigbo, A., Helmig, R., Dahle, H.K., Nordbotten, J.M., Celia, M.A., Audigane, P., Darcis, M., Ennis-King, J., Fan, Y., Flemisch, B., Gasda, S.E., Jin, M., Krug, S., Labregere, D., Beni, A.N., Pawar, R.J., Sbai, A., Thomas, S.G., Trenty, L., Wei, L.: A benchmark study on problems related to CO2 storage in geologic formations. Comput. Geosci. 13(4), 409–434 (2009). doi:10.1007/s10596-009-9146-x

    Article  Google Scholar 

  2. Eigestad, G., Dahle, H., Hellevang, B., Riis, F., Johansen, W., Øian, E.: Geological modeling and simulation of CO2 injection in the Johansen formation. Comput. Geosci. 13(4), 435–450 (2009). doi:10.1007/s10596-009-9153-y

    Article  Google Scholar 

  3. Eigestad, G., Dahle, H., Hellevang, B., Johansen, W., Lie, K.-A., Riis, F., Øian, E.: Geological and fluid data for modelling CO2 injection in the Johansen formation. http://www.sintef.no/Projectweb/MatMorA/Downloads/Johansen (2008)

  4. SINTEF ICT, The MATLAB Reservoir Simulation Toolbox: Numerical CO2 laboratory. http://www.sintef.no/co2lab 2014

  5. Nilsen, H.M., Lie, K.-A., Møyner, O., Andersen, O.: Spill-point analysis and structural trapping capacity in saline aquifers using MRST-co2lab. Comput. Geosci. 75, 33–43 (2015). doi:10.1016/j.cageo.2014.11.002

    Article  Google Scholar 

  6. Nilsen, H.M., Lie, K.-A., Andersen, O.: Analysis of trapping capacities in the Norwegian North Sea using MRST-co2lab. Comput. Geosci. 79, 15–26 (2015). doi:10.1016/j.cageo.2015.03.001

    Article  Google Scholar 

  7. Lie, K.-A., Nilsen, H.M., Andersen, O., Møyner, O.: A simulation workflow for large-scale CO2 storage in the Norwegian North Sea. Comput. Geosci. 1, 1–16 (2015). doi:10.1007/s10596-015-9487-6

    Google Scholar 

  8. Andersen, O., Lie, K.-A., Nilsen, H.M.: An open-source toolchain for simulation and optimization of aquifer-wide CO2 storage, Energy Procedia. In: the 8th Trondheim Conference on Capture, Transport and Storage, pp. 1–10 (2015)

  9. The MATLAB Reservoir Simulation Toolbox, version 2015a, http://www.sintef.no/MRST/ (2015)

  10. Lie, K.-A., Krogstad, S., Ligaarden, I.S., Natvig, J.R., Nilsen, H.M., Skaflestad, B.: Open source MATLAB implementation of consistent discretisations on complex grids. Comput. Geosci. 16, 297–322 (2012). doi:10.1007/s10596-011-9244-4

    Article  Google Scholar 

  11. Lie, K.-A.: An Introduction to Reservoir Simulation Using MATLAB: User guide for the Matlab Reservoir Simulation Toolbox (MRST), SINTEF ICT. http://www.sintef.no/Projectweb/MRST/publications, 1st Edition (2014)

  12. Krogstad, S., Lie, K.-A., Møyner, O., Nilsen, H.M., Raynaud, X., Skaflestad, B.: MRST-AD – an open-source framework for rapid prototyping and evaluation of reservoir simulation problems. In: SPE Reservoir Simulation Symposium, pp. 23–25. Houston. doi:10.2118/173317-MS (2015)

  13. International Energy Agency, Sleipner benchmark model (2012). http://www.ieaghg.org/index.php?/2009112025/modelling-network.html

  14. Halland, E.K., Mujezinović, J., Riis, F. (eds.): CO2 Storage Atlas: Norwegian Continental Shelf, Norwegian Petroleum Directorate, P.O. Box 600, NO-4003 Stavanger, Norway. http://www.npd.no/en/Publications/Reports/Compiled-CO2-atlas/ (2014)

  15. Martin, J.C.: Some mathematical aspects of two phase flow with application to flooding and gravity segregation. Prod. Monthly 22(6), 22–35 (1958)

    Google Scholar 

  16. Coats, K.H., Nielsen, R.L., Terune, M.H., Weber, A.G.: Simulation of three-dimensional, two-phase flow in oil and gas reservoirs. Soc. Pet. Eng. J. Dec, 377–388 (1967)

  17. Martin, J.C.: Partial integration of equation of multiphase flow. Soc. Pet. Eng. J. Dec, 370–380 (1968)

  18. Coats, K.H., Dempsey, J.R., Henderson, J.H.: The use of vertical equilibrium in two-dimensional simulation of three-dimensional reservoir preformance. Soc. Pet. Eng. J. Mar., 68–71 (1971)

  19. Nordbotten, J.M., Celia, M.A.: Geological Storage of CO2: Modeling Approaches for Large-Scale Simulation. Wiley, Hoboken (2012)

  20. Yortsos, Y.: A theoretical analysis of vertical flow equilibrium. Transp. Porous Media 18(2), 107–129 (1995). doi:10.1007/BF01064674

    Article  Google Scholar 

  21. Court, B., Bandilla, K.W., Celia, M.A., Janzen, A., Dobossy, M., Nordbotten, J.M.: Applicability of vertical-equilibrium and sharp-interface assumptions in CO2 sequestration modeling. Int. J. Greenhouse Gas Control 10, 134–147 (2012). doi:10.1016/j.ijggc.2012.04.015

    Article  Google Scholar 

  22. Bandilla, K.W., Celia, M.A., Birkholzer, J.T., Cihan, A., Leister, E.C.: Multiphase modeling of geologic carbon sequestration in saline aquifers. Groundwater 53(3), 362–377 (2015). doi:10.1111/gwat.12315

    Article  Google Scholar 

  23. Celia, M.A., Bachu, S., Nordbotten, J.M., Bandilla, K.W.: Status of CO2 storage in deep saline aquifers with emphasis on modeling approaches and practical simulations. Water Resour. Res. 51(9). doi:10.1002/2015WR017609

  24. Nordbotten, J.M., Celia, M.A.: Similarity solutions for fluid injection into confined aquifers. J. Fluid Mech. 561, 307–327 (2006). doi:10.1017/S0022112006000802

    Article  Google Scholar 

  25. Hesse, M.A., Orr, F.M., Tchelepi, H.A.: Gravity currents with residual trapping. J. Fluid. Mech. 611, 35–60 (2008)

    Article  Google Scholar 

  26. Gasda, S.E., Nordbotten, J.M., Celia, M.A.: Vertical equilibrium with sub-scale analytical methods for geological C02 sequestration. Comput. Geosci. 13(4), 469–481 (2009). doi:10.1007/s10596-009-9138-x

    Article  Google Scholar 

  27. Nilsen, H.M., Herrera, P.A., Ashraf, M., Ligaarden, I., Iding, M., Hermanrud, C., Lie, K.-A., Nordbotten, J.M., Dahle, H.K., Keilegavlen, E.: Field-case simulation of CO2-plume migration using vertical-equilibrium models. Energy Procedia 4(0), 3801–3808 (2011). doi:10.1016/j.egypro.2011.02.315

    Article  Google Scholar 

  28. Gasda, S.E., Nordbotten, J.M., Celia, M.A.: Application of simplified models to CO2 migration and immobilization in large-scale geological systems. Int. J. Greenh. Gas Control 9, 72–84 (2012). doi:10.1016/j.ijggc.2012.03.001

    Article  Google Scholar 

  29. Andersen, O., Gasda, S., Nilsen, H.M.: Vertically averaged equations with variable density for CO2 flow in porous media. Transp. Porous Media 107, 95–127 (2015). doi:10.1007/s11242-014-0427-z

    Article  Google Scholar 

  30. Gasda, S.E., Nordbotten, J.M., Celia, M.A.: Vertically-averaged approaches to CO2 injection with solubility trapping. Water Resour. Res. 47, W05528 (2011). doi:10.1029/2010WR009075

    Google Scholar 

  31. Mykkeltvedt, T.S., Nordbotten, J.M.: Estimating effective rates of convective mixing from commercial-scale injection. Environ. Earth Sci. 67(2), 527–535 (2012). doi:10.1007/s12665-012-1674-3

    Article  Google Scholar 

  32. Nordbotten, J.M., Dahle, H.K.: Impact of the capillary fringe in vertically integrated models for CO2 storage. Water Resour. Res. 47(2), W02537 (2011). doi:10.1029/2009WR008958

    Google Scholar 

  33. Nilsen, H.M., Syversveen, A.R., Lie, K.-A., Tveranger, J., Nordbotten, J.M.: Impact of top-surface morphology on CO2 storage capacity. Int. J. Greenh. Gas Control 11(0), 221–235 (2012). doi:10.1016/j.ijggc.2012.08.012

    Article  Google Scholar 

  34. Gasda, S.E., Nilsen, H.M., Dahle, H.K., Gray, W.G.: Effective models for CO2 migration in geological systems with varying topography. Water Resour. Res. 48 (10). doi:10.1029/2012WR012264

  35. Gasda, S.E., Nilsen, H.M., Dahle, H.K.: Impact of structural heterogeneity on upscaled models for large-scale CO 2 migration and trapping in saline aquifers. Adv. Water Resour. 62 (Part C (0)), 520–532 (2013). doi:10.1016/j.advwatres.2013.05.003

    Article  Google Scholar 

  36. Gasda, S.E., du Plessis, E., Dahle, H.K.: Upscaled models for modeling CO2 injection and migration in geological systems. In: Bastian, P., Kraus, J., Scheichl, R., Wheeler, M. (eds.) Simulation of Flow in Porous Media, Vol. 12 of Radon Series on Computational and Applied Mathematics, pp 1–38. De Gruyter, Berlin (2013), 10.1515/9783110282245.1

  37. Doster, F., Nordbotten, J.M., Celia, M.A.: Hysteretic upscaled constitutive relationships for vertically integrated porous media flow. Comput. Visual. Sci. 15, 147–161 (2012). doi:10.1007/s00791-013-0206-3

    Article  Google Scholar 

  38. Doster, F., Nordbotten, J., Celia, M.: Impact of capillary hysteresis and trapping on vertically integrated models for CO2 storage. Adv. Water Resour. 62(Part C), 465–474 (2013). doi:10.1016/j.advwatres.2013.09.005

    Article  Google Scholar 

  39. Bandilla, K.W., Celia, M.A., Elliot, T.R., Person, M., Ellett, K.M., Rupp, J.A., Gable, C., Zhang, Y.: Modeling carbon sequestration in the illinois basin using a vertically-integrated approach. Comput. Vis. Sci. 15(1), 39–51 (2012). doi:10.1007/s00791-013-0195-2

    Article  Google Scholar 

  40. Bandilla, K.W., Kraemer, S.R., Birkholzer, J.T.: Using semi-analytic solutions to approximate the area of potential impact for carbon dioxide injection. Int. J. Greenh. Gas Control 8, 196–204 (2012). doi:10.1016/j.ijggc.2012.02.009.

    Article  Google Scholar 

  41. Gasda, S., Stephansen, A., Aavatsmark, I., Dahle, H.: Upscaled modeling of CO2 injection and migration with coupled thermal processes. Energy Procedia 40, 384–391 (2013). doi:10.1016/j.egypro.2013.08.044

    Article  Google Scholar 

  42. Ligaarden, I.S., Nilsen, H.M.: Numerical aspects of using vertical equilibrium models for simulating CO2 sequestration. In: Proceedings of ECMOR XII–12th European Conference on the Mathematics of Oil Recovery, p 2010. EAGE , Oxford

  43. Bandilla, K.W., Celia, M.A., Leister, E.: Impact of model complexity on CO2 plume modeling at Sleipner. Energy Procedia 63, 3405–3415 (2014). doi:10.1016/j.egypro.2014.11.369. 12th International Conference on Greenhouse Gas Control Technologies, GHGT-12

  44. Jacks, H.H., Smith, O.J.E., Mattax, C.C.: The modeling of a three-dimensional reservoir with a two-dimensional reservoir simulator – the use of dynamic pseudo functions. Soc. Pet. Eng. J. 13(3), 175–185 (1973). doi:10.2118/4071-PA

    Article  Google Scholar 

  45. Kyte, J.R., Berry, D.W.: New pseudo functions to control numerical dispersion. Soc. Pet. Eng. J 15(4), 269–276 (1975). doi:10.2118/5105-PA

    Article  Google Scholar 

  46. Stone, H.L.: Rigorous black oil pseudo functions. In: SPE Symposium on Reservoir Simulation , 17–20 February, Anaheim, California, Society of Petroleum Engineers. doi:10.2118/21207-MS (1991)

  47. Barker, J., Thibeau, S.: A critical review of the use of pseudorelative permeabilities for upscaling. SPE Reservoir Eng. 12(2), 138–143 (1997). doi:10.2118/35491-PA

    Article  Google Scholar 

  48. Andersen, O., Nilsen, H.M., Lie, K.-A.: Reexamining CO2 storage capacity and utilization of the Utsira Formation. In: ECMOR XIV – 14th European Conference on the Mathematics of Oil Recovery, Catania, Sicily, Italy, 8-11 September 2014, EAGE. doi:10.3997/2214-4609.20141809 (2014)

  49. Lie, K.-A., Nilsen, H. M., Andersen, O., Møyner, O.: A simulation workflow for large-scale CO2 storage in the Norwegian North Sea. In: ECMOR XIV – 14th European Conference on the Mathematics of Oil Recovery, Catania, Sicily, Italy, 8-11 September 2014, EAGE. doi:10.3997/2214-4609.20141877 (2014)

  50. Nilsen, H.M., Lie, K.-A., Andersen, O.: Fully implicit simulation of vertical-equilibrium models with hysteresis and capillary fringe. Comput. Geosci. (2015). doi:10.1007/s10596-015-9547-y

  51. Span, R., Wagner, W.: A new equation of state for carbon dioxide covering the fluid region from triple-point temperature to 1100 K at pressures up to 800 MPa. J. Phys. Chem. Ref. Data 25(6), 1509–1597 (1996)

    Article  Google Scholar 

  52. Juanes, R., MacMinn, C.W., Szulczewski, M.L.: The footprint of the CO2 plume during carbon dioxide storage in saline aquifers: Storage efficiency for capillary trapping at the basin scale, Transp. Porous Media 82(1), 19–30 (2010). doi:10.1007/s11242-009-9420-3

    Article  Google Scholar 

  53. Halland, E.K., Johansen, W.T., Riis, F. (eds.): CO2 Storage Atlas: Norwegian North Sea, Norwegian Petroleum Directorate, P. O. Box 600, NO–4003 Stavanger, Norway. http://www.npd.no/no/Publikasjoner/Rapporter/CO2-lagringsatlas/, year=2011

  54. Renard, P., De Marsily, G.: Calculating equivalent permeability: a review. Adv. Water Resour. 20(5), 253–278 (1997)

    Article  Google Scholar 

  55. Riaz, A., Hesse, M., Tchelepi, H.A., Orr, F.M.: Onset of convection in a gravitationally unstable diffusive boundary layer in porous media. J. Fluid. Mech. 548, 87–111 (2006). doi:10.1017/S0022112005007494

    Article  Google Scholar 

  56. Pau, G.S.H., Bell, J.B., Pruess, K., Almgren, A.S., Lijewski, M.J., Zhang, K.: High-resolution simulation and characterization of density-driven flow in CO2 storage in saline aquifers. Adv. Water Resour. 33(4), 443–455 (2010). doi:10.1016/j.advwatres.2010.01.009

    Article  Google Scholar 

  57. Hassanzadeh, H., Pooladi-Darvish, M., Keith, D.W.: Scaling behavior of convective mixing, with application to geological storage of CO2. AIChE J. 53(5), 1121–1131 (2007). doi:10.1002/aic.11157

    Article  Google Scholar 

  58. Elenius, M.T.: Convective mixing in geological carbon storage, Ph.D. thesis, University of Bergen. https://bora.uib.no/handle/1956/5540 (2011)

  59. Cheng, P., Bestehorn, M., Firoozabadi, A.: Effect of permeability anisotropy on buoyancy-driven flow for CO2 sequestration in saline aquifers. Water Resour. Res. 48(9). doi:10.1029/2012WR011939

  60. Alnes, H., Eiken, O., Nooner, S., Sasagawa, G., Stenvold, T., Zumberge, M.: Results from Sleipner gravity monitoring: Updated density and temperature distribution of the CO2 plume. Energy Procedia 4 (0), 5504–5511 (2011). doi:10.1016/j.egypro.2011.02.536

    Article  Google Scholar 

  61. Hauge, V.L., Kolbjrnsen, O.: Bayesian inversion of gravimetric data and assessment of CO2 dissolution in the utsira formation. Interpretation 3 (2), SP1–SP10 (2015). doi:10.1190/INT-2014-0193.1

    Article  Google Scholar 

  62. Van Dam, R.L., Simmons, C.T., Hyndman, D.W., Wood, W.W.: Natural free convection in porous media: First field documentation in groundwater. Geophys. Res. Lett. 36(11). doi:10.1029/2008GL036906

  63. Van Dam, R.L., Eustice, B.P., Hyndman, D.W., Wood, W.W., Simmons, C.T.: Electrical imaging and fluid modeling of convective fingering in a shallow water-table aquifer. Water Resour. Res. 50(2), 954–968 (2014). doi:10.1002/2013WR013673

    Article  Google Scholar 

  64. Anderson, M.P.: Heat as a ground water tracer. Ground Water 43 (6), 951–968 (2005). doi:10.1111/j.1745-6584.2005.00052.x

    Article  Google Scholar 

  65. Saar, M.: Review: Geothermal heat as a tracer of large-scale groundwater flow and as a means to determine permeability fields. Hydrogeol. J. 19(1), 31–52 (2011). doi:10.1007/s10040-010-0657-2

    Article  Google Scholar 

  66. Bell, I.H., Wronski, J., Quoilin, S., Lemort, V.: Pure and pseudo-pure fluid thermophysical property evaluation and the open-source thermophysical property library coolProp. Ind. Eng. Chem. Res. 53(6), 2498–2508 (2014). doi:10.1021/ie4033999

    Article  Google Scholar 

  67. Benson, S.M., et al.: Underground geological storage. In: IPCC Special Report on Carbon Dioxide Capture and Storage, Intergovernmental Panel on Climate Change. Ch. 5. Cambridge University Press, Cambridge (2005)

    Google Scholar 

  68. Cavanagh, A.: Benchmark calibration and prediction of the Sleipner CO2 plume from 2006 to 2012. Energy Procedia 37, 3529–3545, gHGT-11 (2013). doi:10.1016/j.egypro.2013.06.246

    Article  Google Scholar 

  69. Lie, K.-A., Nilsen, H.M., Rasmussen, A.F., Raynaud, X.: Fast simulation of polymer injection in heavy-oil reservoirs based on topological sorting and sequential splitting. SPE J. 19(6), 991–1004 (2014). doi:10.2118/163599-PA

    Article  Google Scholar 

  70. Ertsås, M.: Vertically integrated models of CO2 migration: GPU accelerated simulations, Master’s thesis, University of Oslo. http://urn.nb.no/URN:NBN:no-28112(2011)

  71. Prestegård, E.K.: A GPU accelerated simulator for CO2 storage, Master’s thesis, Norwegian University of Science and Technology. https://daim.idi.ntnu.no/masteroppgave?id=10345 (2014)

Download references

Author information

Authors and Affiliations

  1. SINTEF ICT, Applied Mathematics, P.O. Box 124 Blindern, 0314, Oslo, Norway

    Halvor Møll Nilsen, Knut-Andreas Lie & Odd Andersen

  2. Department of Mathematics, University of Bergen, P.O. Box 7803, 5020, Bergen, Norway

    Odd Andersen

Authors
  1. Halvor Møll Nilsen
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. Knut-Andreas Lie
    View author publications

    You can also search for this author in PubMed Google Scholar

  3. Odd Andersen
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to Odd Andersen.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Nilsen, H.M., Lie, KA. & Andersen, O. Robust simulation of sharp-interface models for fast estimation of CO2 trapping capacity in large-scale aquifer systems. Comput Geosci 20, 93–113 (2016). https://doi.org/10.1007/s10596-015-9549-9

Download citation

  • Received: 01 October 2014

  • Accepted: 20 November 2015

  • Published: 17 December 2015

  • Issue Date: February 2016

  • DOI: https://doi.org/10.1007/s10596-015-9549-9

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • CO2 storage
  • Vertical equilibrium
  • Compressibility
  • Dissolution
Download PDF

Working on a manuscript?

Avoid the common mistakes

Advertisement

Over 10 million scientific documents at your fingertips

Switch Edition
  • Academic Edition
  • Corporate Edition
  • Home
  • Impressum
  • Legal information
  • Privacy statement
  • California Privacy Statement
  • How we use cookies
  • Manage cookies/Do not sell my data
  • Accessibility
  • FAQ
  • Contact us
  • Affiliate program

Not affiliated

Springer Nature

© 2023 Springer Nature Switzerland AG. Part of Springer Nature.