Abstract
Modeling geological carbon storage represents a new and substantial challenge for the subsurface geosciences. To increase understanding and make good engineering decisions, containment processes and large-scale storage operations must be simulated in a thousand-year perspective. Large differences in spatial and temporal scales make it prohibitively expensive to compute the fate of injected CO2 using traditional 3D simulators. Instead, accurate forecast can be computed using simplified models that are adapted to the specific setting of the bouyancy-driven migration of the light fluid phase. This paper presents a family of vertically integrated models for studying the combined large-scale and long-term effects of structural, residual, and solubility trapping of CO2. The models are based on an assumption of a sharp interface separating CO2 and brine and can provide a detailed inventory of the injected CO2 volumes over periods of thousands of years within reasonable computational time. To be compatible with simulation tools used in industry, the models are formulated in a black-oil framework. The models are implemented in MRST-co2lab, which is an open community software developed especially to study and optimize large-scale, long-term geological storage of CO2. The resulting simulators are fully implicit and handle input from standard geomodeling tools.
References
Class, H., Ebigbo, A., Helmig, R., Dahle, H.K., Nordbotten, J.M., Celia, M.A., Audigane, P., Darcis, M., Ennis-King, J., Fan, Y., Flemisch, B., Gasda, S.E., Jin, M., Krug, S., Labregere, D., Beni, A.N., Pawar, R.J., Sbai, A., Thomas, S.G., Trenty, L., Wei, L.: A benchmark study on problems related to CO2 storage in geologic formations. Comput. Geosci. 13(4), 409–434 (2009). doi:10.1007/s10596-009-9146-x
Eigestad, G., Dahle, H., Hellevang, B., Riis, F., Johansen, W., Øian, E.: Geological modeling and simulation of CO2 injection in the Johansen formation. Comput. Geosci. 13(4), 435–450 (2009). doi:10.1007/s10596-009-9153-y
Eigestad, G., Dahle, H., Hellevang, B., Johansen, W., Lie, K.-A., Riis, F., Øian, E.: Geological and fluid data for modelling CO2 injection in the Johansen formation. http://www.sintef.no/Projectweb/MatMorA/Downloads/Johansen (2008)
SINTEF ICT, The MATLAB Reservoir Simulation Toolbox: Numerical CO2 laboratory. http://www.sintef.no/co2lab 2014
Nilsen, H.M., Lie, K.-A., Møyner, O., Andersen, O.: Spill-point analysis and structural trapping capacity in saline aquifers using MRST-co2lab. Comput. Geosci. 75, 33–43 (2015). doi:10.1016/j.cageo.2014.11.002
Nilsen, H.M., Lie, K.-A., Andersen, O.: Analysis of trapping capacities in the Norwegian North Sea using MRST-co2lab. Comput. Geosci. 79, 15–26 (2015). doi:10.1016/j.cageo.2015.03.001
Lie, K.-A., Nilsen, H.M., Andersen, O., Møyner, O.: A simulation workflow for large-scale CO2 storage in the Norwegian North Sea. Comput. Geosci. 1, 1–16 (2015). doi:10.1007/s10596-015-9487-6
Andersen, O., Lie, K.-A., Nilsen, H.M.: An open-source toolchain for simulation and optimization of aquifer-wide CO2 storage, Energy Procedia. In: the 8th Trondheim Conference on Capture, Transport and Storage, pp. 1–10 (2015)
The MATLAB Reservoir Simulation Toolbox, version 2015a, http://www.sintef.no/MRST/ (2015)
Lie, K.-A., Krogstad, S., Ligaarden, I.S., Natvig, J.R., Nilsen, H.M., Skaflestad, B.: Open source MATLAB implementation of consistent discretisations on complex grids. Comput. Geosci. 16, 297–322 (2012). doi:10.1007/s10596-011-9244-4
Lie, K.-A.: An Introduction to Reservoir Simulation Using MATLAB: User guide for the Matlab Reservoir Simulation Toolbox (MRST), SINTEF ICT. http://www.sintef.no/Projectweb/MRST/publications, 1st Edition (2014)
Krogstad, S., Lie, K.-A., Møyner, O., Nilsen, H.M., Raynaud, X., Skaflestad, B.: MRST-AD – an open-source framework for rapid prototyping and evaluation of reservoir simulation problems. In: SPE Reservoir Simulation Symposium, pp. 23–25. Houston. doi:10.2118/173317-MS (2015)
International Energy Agency, Sleipner benchmark model (2012). http://www.ieaghg.org/index.php?/2009112025/modelling-network.html
Halland, E.K., Mujezinović, J., Riis, F. (eds.): CO2 Storage Atlas: Norwegian Continental Shelf, Norwegian Petroleum Directorate, P.O. Box 600, NO-4003 Stavanger, Norway. http://www.npd.no/en/Publications/Reports/Compiled-CO2-atlas/ (2014)
Martin, J.C.: Some mathematical aspects of two phase flow with application to flooding and gravity segregation. Prod. Monthly 22(6), 22–35 (1958)
Coats, K.H., Nielsen, R.L., Terune, M.H., Weber, A.G.: Simulation of three-dimensional, two-phase flow in oil and gas reservoirs. Soc. Pet. Eng. J. Dec, 377–388 (1967)
Martin, J.C.: Partial integration of equation of multiphase flow. Soc. Pet. Eng. J. Dec, 370–380 (1968)
Coats, K.H., Dempsey, J.R., Henderson, J.H.: The use of vertical equilibrium in two-dimensional simulation of three-dimensional reservoir preformance. Soc. Pet. Eng. J. Mar., 68–71 (1971)
Nordbotten, J.M., Celia, M.A.: Geological Storage of CO2: Modeling Approaches for Large-Scale Simulation. Wiley, Hoboken (2012)
Yortsos, Y.: A theoretical analysis of vertical flow equilibrium. Transp. Porous Media 18(2), 107–129 (1995). doi:10.1007/BF01064674
Court, B., Bandilla, K.W., Celia, M.A., Janzen, A., Dobossy, M., Nordbotten, J.M.: Applicability of vertical-equilibrium and sharp-interface assumptions in CO2 sequestration modeling. Int. J. Greenhouse Gas Control 10, 134–147 (2012). doi:10.1016/j.ijggc.2012.04.015
Bandilla, K.W., Celia, M.A., Birkholzer, J.T., Cihan, A., Leister, E.C.: Multiphase modeling of geologic carbon sequestration in saline aquifers. Groundwater 53(3), 362–377 (2015). doi:10.1111/gwat.12315
Celia, M.A., Bachu, S., Nordbotten, J.M., Bandilla, K.W.: Status of CO2 storage in deep saline aquifers with emphasis on modeling approaches and practical simulations. Water Resour. Res. 51(9). doi:10.1002/2015WR017609
Nordbotten, J.M., Celia, M.A.: Similarity solutions for fluid injection into confined aquifers. J. Fluid Mech. 561, 307–327 (2006). doi:10.1017/S0022112006000802
Hesse, M.A., Orr, F.M., Tchelepi, H.A.: Gravity currents with residual trapping. J. Fluid. Mech. 611, 35–60 (2008)
Gasda, S.E., Nordbotten, J.M., Celia, M.A.: Vertical equilibrium with sub-scale analytical methods for geological C02 sequestration. Comput. Geosci. 13(4), 469–481 (2009). doi:10.1007/s10596-009-9138-x
Nilsen, H.M., Herrera, P.A., Ashraf, M., Ligaarden, I., Iding, M., Hermanrud, C., Lie, K.-A., Nordbotten, J.M., Dahle, H.K., Keilegavlen, E.: Field-case simulation of CO2-plume migration using vertical-equilibrium models. Energy Procedia 4(0), 3801–3808 (2011). doi:10.1016/j.egypro.2011.02.315
Gasda, S.E., Nordbotten, J.M., Celia, M.A.: Application of simplified models to CO2 migration and immobilization in large-scale geological systems. Int. J. Greenh. Gas Control 9, 72–84 (2012). doi:10.1016/j.ijggc.2012.03.001
Andersen, O., Gasda, S., Nilsen, H.M.: Vertically averaged equations with variable density for CO2 flow in porous media. Transp. Porous Media 107, 95–127 (2015). doi:10.1007/s11242-014-0427-z
Gasda, S.E., Nordbotten, J.M., Celia, M.A.: Vertically-averaged approaches to CO2 injection with solubility trapping. Water Resour. Res. 47, W05528 (2011). doi:10.1029/2010WR009075
Mykkeltvedt, T.S., Nordbotten, J.M.: Estimating effective rates of convective mixing from commercial-scale injection. Environ. Earth Sci. 67(2), 527–535 (2012). doi:10.1007/s12665-012-1674-3
Nordbotten, J.M., Dahle, H.K.: Impact of the capillary fringe in vertically integrated models for CO2 storage. Water Resour. Res. 47(2), W02537 (2011). doi:10.1029/2009WR008958
Nilsen, H.M., Syversveen, A.R., Lie, K.-A., Tveranger, J., Nordbotten, J.M.: Impact of top-surface morphology on CO2 storage capacity. Int. J. Greenh. Gas Control 11(0), 221–235 (2012). doi:10.1016/j.ijggc.2012.08.012
Gasda, S.E., Nilsen, H.M., Dahle, H.K., Gray, W.G.: Effective models for CO2 migration in geological systems with varying topography. Water Resour. Res. 48 (10). doi:10.1029/2012WR012264
Gasda, S.E., Nilsen, H.M., Dahle, H.K.: Impact of structural heterogeneity on upscaled models for large-scale CO 2 migration and trapping in saline aquifers. Adv. Water Resour. 62 (Part C (0)), 520–532 (2013). doi:10.1016/j.advwatres.2013.05.003
Gasda, S.E., du Plessis, E., Dahle, H.K.: Upscaled models for modeling CO2 injection and migration in geological systems. In: Bastian, P., Kraus, J., Scheichl, R., Wheeler, M. (eds.) Simulation of Flow in Porous Media, Vol. 12 of Radon Series on Computational and Applied Mathematics, pp 1–38. De Gruyter, Berlin (2013), 10.1515/9783110282245.1
Doster, F., Nordbotten, J.M., Celia, M.A.: Hysteretic upscaled constitutive relationships for vertically integrated porous media flow. Comput. Visual. Sci. 15, 147–161 (2012). doi:10.1007/s00791-013-0206-3
Doster, F., Nordbotten, J., Celia, M.: Impact of capillary hysteresis and trapping on vertically integrated models for CO2 storage. Adv. Water Resour. 62(Part C), 465–474 (2013). doi:10.1016/j.advwatres.2013.09.005
Bandilla, K.W., Celia, M.A., Elliot, T.R., Person, M., Ellett, K.M., Rupp, J.A., Gable, C., Zhang, Y.: Modeling carbon sequestration in the illinois basin using a vertically-integrated approach. Comput. Vis. Sci. 15(1), 39–51 (2012). doi:10.1007/s00791-013-0195-2
Bandilla, K.W., Kraemer, S.R., Birkholzer, J.T.: Using semi-analytic solutions to approximate the area of potential impact for carbon dioxide injection. Int. J. Greenh. Gas Control 8, 196–204 (2012). doi:10.1016/j.ijggc.2012.02.009.
Gasda, S., Stephansen, A., Aavatsmark, I., Dahle, H.: Upscaled modeling of CO2 injection and migration with coupled thermal processes. Energy Procedia 40, 384–391 (2013). doi:10.1016/j.egypro.2013.08.044
Ligaarden, I.S., Nilsen, H.M.: Numerical aspects of using vertical equilibrium models for simulating CO2 sequestration. In: Proceedings of ECMOR XII–12th European Conference on the Mathematics of Oil Recovery, p 2010. EAGE , Oxford
Bandilla, K.W., Celia, M.A., Leister, E.: Impact of model complexity on CO2 plume modeling at Sleipner. Energy Procedia 63, 3405–3415 (2014). doi:10.1016/j.egypro.2014.11.369. 12th International Conference on Greenhouse Gas Control Technologies, GHGT-12
Jacks, H.H., Smith, O.J.E., Mattax, C.C.: The modeling of a three-dimensional reservoir with a two-dimensional reservoir simulator – the use of dynamic pseudo functions. Soc. Pet. Eng. J. 13(3), 175–185 (1973). doi:10.2118/4071-PA
Kyte, J.R., Berry, D.W.: New pseudo functions to control numerical dispersion. Soc. Pet. Eng. J 15(4), 269–276 (1975). doi:10.2118/5105-PA
Stone, H.L.: Rigorous black oil pseudo functions. In: SPE Symposium on Reservoir Simulation , 17–20 February, Anaheim, California, Society of Petroleum Engineers. doi:10.2118/21207-MS (1991)
Barker, J., Thibeau, S.: A critical review of the use of pseudorelative permeabilities for upscaling. SPE Reservoir Eng. 12(2), 138–143 (1997). doi:10.2118/35491-PA
Andersen, O., Nilsen, H.M., Lie, K.-A.: Reexamining CO2 storage capacity and utilization of the Utsira Formation. In: ECMOR XIV – 14th European Conference on the Mathematics of Oil Recovery, Catania, Sicily, Italy, 8-11 September 2014, EAGE. doi:10.3997/2214-4609.20141809 (2014)
Lie, K.-A., Nilsen, H. M., Andersen, O., Møyner, O.: A simulation workflow for large-scale CO2 storage in the Norwegian North Sea. In: ECMOR XIV – 14th European Conference on the Mathematics of Oil Recovery, Catania, Sicily, Italy, 8-11 September 2014, EAGE. doi:10.3997/2214-4609.20141877 (2014)
Nilsen, H.M., Lie, K.-A., Andersen, O.: Fully implicit simulation of vertical-equilibrium models with hysteresis and capillary fringe. Comput. Geosci. (2015). doi:10.1007/s10596-015-9547-y
Span, R., Wagner, W.: A new equation of state for carbon dioxide covering the fluid region from triple-point temperature to 1100 K at pressures up to 800 MPa. J. Phys. Chem. Ref. Data 25(6), 1509–1597 (1996)
Juanes, R., MacMinn, C.W., Szulczewski, M.L.: The footprint of the CO2 plume during carbon dioxide storage in saline aquifers: Storage efficiency for capillary trapping at the basin scale, Transp. Porous Media 82(1), 19–30 (2010). doi:10.1007/s11242-009-9420-3
Halland, E.K., Johansen, W.T., Riis, F. (eds.): CO2 Storage Atlas: Norwegian North Sea, Norwegian Petroleum Directorate, P. O. Box 600, NO–4003 Stavanger, Norway. http://www.npd.no/no/Publikasjoner/Rapporter/CO2-lagringsatlas/, year=2011
Renard, P., De Marsily, G.: Calculating equivalent permeability: a review. Adv. Water Resour. 20(5), 253–278 (1997)
Riaz, A., Hesse, M., Tchelepi, H.A., Orr, F.M.: Onset of convection in a gravitationally unstable diffusive boundary layer in porous media. J. Fluid. Mech. 548, 87–111 (2006). doi:10.1017/S0022112005007494
Pau, G.S.H., Bell, J.B., Pruess, K., Almgren, A.S., Lijewski, M.J., Zhang, K.: High-resolution simulation and characterization of density-driven flow in CO2 storage in saline aquifers. Adv. Water Resour. 33(4), 443–455 (2010). doi:10.1016/j.advwatres.2010.01.009
Hassanzadeh, H., Pooladi-Darvish, M., Keith, D.W.: Scaling behavior of convective mixing, with application to geological storage of CO2. AIChE J. 53(5), 1121–1131 (2007). doi:10.1002/aic.11157
Elenius, M.T.: Convective mixing in geological carbon storage, Ph.D. thesis, University of Bergen. https://bora.uib.no/handle/1956/5540 (2011)
Cheng, P., Bestehorn, M., Firoozabadi, A.: Effect of permeability anisotropy on buoyancy-driven flow for CO2 sequestration in saline aquifers. Water Resour. Res. 48(9). doi:10.1029/2012WR011939
Alnes, H., Eiken, O., Nooner, S., Sasagawa, G., Stenvold, T., Zumberge, M.: Results from Sleipner gravity monitoring: Updated density and temperature distribution of the CO2 plume. Energy Procedia 4 (0), 5504–5511 (2011). doi:10.1016/j.egypro.2011.02.536
Hauge, V.L., Kolbjrnsen, O.: Bayesian inversion of gravimetric data and assessment of CO2 dissolution in the utsira formation. Interpretation 3 (2), SP1–SP10 (2015). doi:10.1190/INT-2014-0193.1
Van Dam, R.L., Simmons, C.T., Hyndman, D.W., Wood, W.W.: Natural free convection in porous media: First field documentation in groundwater. Geophys. Res. Lett. 36(11). doi:10.1029/2008GL036906
Van Dam, R.L., Eustice, B.P., Hyndman, D.W., Wood, W.W., Simmons, C.T.: Electrical imaging and fluid modeling of convective fingering in a shallow water-table aquifer. Water Resour. Res. 50(2), 954–968 (2014). doi:10.1002/2013WR013673
Anderson, M.P.: Heat as a ground water tracer. Ground Water 43 (6), 951–968 (2005). doi:10.1111/j.1745-6584.2005.00052.x
Saar, M.: Review: Geothermal heat as a tracer of large-scale groundwater flow and as a means to determine permeability fields. Hydrogeol. J. 19(1), 31–52 (2011). doi:10.1007/s10040-010-0657-2
Bell, I.H., Wronski, J., Quoilin, S., Lemort, V.: Pure and pseudo-pure fluid thermophysical property evaluation and the open-source thermophysical property library coolProp. Ind. Eng. Chem. Res. 53(6), 2498–2508 (2014). doi:10.1021/ie4033999
Benson, S.M., et al.: Underground geological storage. In: IPCC Special Report on Carbon Dioxide Capture and Storage, Intergovernmental Panel on Climate Change. Ch. 5. Cambridge University Press, Cambridge (2005)
Cavanagh, A.: Benchmark calibration and prediction of the Sleipner CO2 plume from 2006 to 2012. Energy Procedia 37, 3529–3545, gHGT-11 (2013). doi:10.1016/j.egypro.2013.06.246
Lie, K.-A., Nilsen, H.M., Rasmussen, A.F., Raynaud, X.: Fast simulation of polymer injection in heavy-oil reservoirs based on topological sorting and sequential splitting. SPE J. 19(6), 991–1004 (2014). doi:10.2118/163599-PA
Ertsås, M.: Vertically integrated models of CO2 migration: GPU accelerated simulations, Master’s thesis, University of Oslo. http://urn.nb.no/URN:NBN:no-28112(2011)
Prestegård, E.K.: A GPU accelerated simulator for CO2 storage, Master’s thesis, Norwegian University of Science and Technology. https://daim.idi.ntnu.no/masteroppgave?id=10345 (2014)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
About this article
Cite this article
Nilsen, H.M., Lie, KA. & Andersen, O. Robust simulation of sharp-interface models for fast estimation of CO2 trapping capacity in large-scale aquifer systems. Comput Geosci 20, 93–113 (2016). https://doi.org/10.1007/s10596-015-9549-9
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10596-015-9549-9
Keywords
- CO2 storage
- Vertical equilibrium
- Compressibility
- Dissolution