Skip to main content

Advertisement

Log in

Review: Geothermal heat as a tracer of large-scale groundwater flow and as a means to determine permeability fields

Revue: La chaleur géothermique en tant que traceur des écoulements souterrains à grande échelle et moyen de caractériser des champs de perméabilité

Revisión: El calor geotérmico como un trazador del flujo a gran escala de agua subterránea y como un medio para determinar campos de permeabilidad

综述: 地热热量做为大尺度地下水流的示踪剂以确定渗透率场

Revisão: Calor geotérmico como traçador de escoamentos subterrâneos em larga escala e como meio de determinação de campos de permeabilidade

  • Paper
  • Published:
Hydrogeology Journal Aims and scope Submit manuscript

Abstract

A review of coupled groundwater and heat transfer theory is followed by an introduction to geothermal measurement techniques. Thereafter, temperature-depth profiles (geotherms) and heat discharge at springs to infer hydraulic parameters and processes are discussed. Several studies included in this review state that minimum permeabilities of approximately 5 × 10−17 < k min <10−15 m2 are required to observe advective heat transfer and resultant geotherm perturbations. Permeabilities below k min tend to cause heat-conduction-dominated systems, precluding inversion of temperature fields for groundwater flow patterns and constraint of permeabilities other than being <k min. Values of k min depend on the flow-domain aspect-ratio, faults and other heterogeneities, anisotropy of hydraulic and thermal parameters, heat-flow rates, and the water-table shape. However, the k min range is narrow and located toward the lower third of geologic materials, which exhibit permeabilities of 10−21 < k < 10−7 m2. Therefore, a wide range of permeabilities can be investigated by analyzing subsurface temperatures or heat discharge at springs. Furthermore, temperature is easy and economical to measure and because thermal material properties vary far less than hydraulic properties, temperature measurements tend to provide better-constrained groundwater flow and permeability estimates. Aside from hydrogeologic insights, constraint of advective/conductive heat transfer can also provide information on magmatic intrusions, metamorphism, ore deposits, climate variability, and geothermal energy.

Résumé

Une synthèse bibliographique de la théorie de l’écoulement de nappe couplé au transfert de chaleur est suivie par une introduction aux techniques de mesures géothermiques. Ensuite, des profils température-profondeur (géothermes) et le flux de chaleur libéré par des sources sont discutés en vue d’inférer processus en jeu et paramètres hydrodynamiques. Plusieurs études relevées indiquent que des perméabilités minimales k min d’environ 5 × 10−17 à 10−15 m2 sont requises pour observer des transferts de chaleur advectifs et les perturbations des géothermes consécutives. Des perméabilités inférieures à k min tendent à générer des systèmes dominés par la conduction thermique, ce qui interdit l’inversion des champs de température pour la détermination de la géométrie des écoulements souterrains et limite cette inversion aux perméabilités supérieures à k min. Les valeurs k min dépendent de ratios caractéristiques de la forme du domaine d’écoulement, des failles et autres hétérogénéités, de l’anisotropie des paramètres hydrauliques et thermiques, du flux de chaleur, ainsi que de la forme de la surface piézométrique. Cependant, la plage de variation des k min est faible et se situe dans le tiers inférieur de la gamme des perméabilités k des formations géologiques, qui est comprise, elle, entre 10−21 et 10−7 m2. Par suite, une large gamme de perméabilités peut être caractérisée par l’analyse des températures de subsurface ou du flux de chaleur aux sources. En outre, la mesure de température est facile et peu onéreuse et, comme les propriétés thermiques des matériaux varient beaucoup moins que leurs propriétés hydrodynamiques, les mesures de température tendent à fournir des estimations mieux contraintes de l’écoulement des eaux souterraines et de perméabilité. A côté de l’apport hydrogéologique, les transferts de chaleur par advection/conduction peuvent aussi fournir des informations sur les intrusions magmatiques, le métamorphisme, les gisements métallifères, la variabilité climatique et l’énergie géothermique.

Resumen

Se presenta una introducción a las técnicas de mediciones geotérmicas después de una revisión del acoplamiento del agua subterránea y de la teoría de la transferencia del flujo de calor. De allí en adelante se discuten los perfiles de temperatura – profundidad (geotermas) y la descarga del calor en manantiales para inferir los parámetros y los procesos hidráulicos. Varios estudios incluidos en esta revisión manifiestan que se requieren permeabilidades mínimas de aproximadamente 5 × 10−17 < k min <10−15 m2 para observar la transferencia advectiva de calor y de las resultantes perturbaciones geotérmicas. Las permeabilidades debajo de k min tienden a causar sistemas dominados por conducción de calor, impidiendo la inversión de los campos de temperaturas para los patrones de flujo de las aguas subterráneas y a restringir las permeabilidades diferentes a aquellas <k min. Los valores de k min dependen de la relación del flujo y aspecto del dominio, fallas y otras heterogeneidades, anisotropía de parámetros hidráulicos y térmicos, ritmos de flujo de calor y la forma del nivel freático. Sin embargo, el intervalo de k min es estrecho y localizado hacia el tercio más bajo de los materiales geológicos, los cuales exhiben permeabilidades entre 10−21 < k < 10−7 m2. Por lo tanto, un amplio rango de permeabilidades pueden ser investigados analizando las temperaturas subsuperficiales o la descarga de calor en manantiales. Además, la temperatura es fácil y económica de medir y debido a que las propiedades termales de los materiales varían menos que las propiedades hidráulicas, las mediciones de la temperatura tienden a proveer mejores estimaciones restringidas del flujo de agua subterránea y de la permeabilidad. Aparte de los conocimientos hidrogeológicos, las restricciones de la transferencia de calor advectivo/conductivo pueden también proveer información sobre intrusiones magmáticas, metamorfismo, depósitos minerales, variabilidad climática y energía geotérmica.

摘要

本文首先对地下水和热量运移耦合理论进行了综述, 然后介绍了地热测量技术。随后, 讨论了根据温度-深度剖面 (等温线) 和经由泉水排泄的热量推断水文参数和过程。综述中包括的一些研究认为, 若要观察到对流热传导及相应的等温线扰动, 渗透率至少应为约 5 × 10−17 < kmin < 10−15m2。若渗透率小于 kmin, 将形成热传导主导的系统, 此时将无法通过温度场反演地下水流场和约束渗透率。kmin 决定于水流域高宽比、断层和其它非均质因素, 水力和热物性的各向异性、热流量, 及水面形状。但 kmin 的变化范围较窄, 并位于地质材料的下三分之一, 其渗透率为 10−21 < k < 10−7m2。因此, 可以通过分析地下温度或泉水热排放量来研究较大变化范围内的渗透率。此外, 温度测量简单经济, 加之材料的热性质较水力参数变化小得多, 温度测量可提供较好约束的对地下水流和渗透率估计。除了水文地质信息, 对对流、传导/热传递的约束还能提供给关于岩浆侵入、变质、矿床沉积、气候变化, 及地热能。

Resumo

A uma revisão da teoria acoplada do escoamento de água e da transferência de calor, segue-se uma introdução às técnicas de medição geotérmica. Depois disso, analisam-se perfis temperatura-profundidade (geotérmicas) e descargas de calor em nascentes, para se inferirem parâmetros hidráulicos e processos. Diversos estudos incluídos nesta revisão mostram que são necessárias permeabilidades mínimas de aproximadamente 5 × 10−17 < k min <10−15 m2 para que se observem transferências térmicas advectivas e as resultantes perturbações nas geotérmicas. Permeabilidades abaixo de k min tendem a causar sistemas dominados pela condução, impedindo a inversão de campos de temperatura para padrões de escoamento de água subterrânea e a delimitação de outras permeabilidades que não sejam <k min. Os valores k min dependem da relação largura/altura do domínio de fluxo, de falhas e outras heterogeneidades, da anisotropia dos parâmetros hidráulicos e térmicos, das taxas de fluxo de calor e da forma da superfície piezométrica. No entanto, o domínio de variação de k min é restrito e localiza-se no terço inferior dos materiais geológicos que exibem permeabilidades 10−21 < k < 10−7 m2. Daí resulta a possibilidade de poder ser investigada uma ampla gama de permeabilidades analisando as temperaturas subsuperficiais ou as descargas térmicas de nascentes. Para além disso, a temperatura é fácil e economicamente mensurável, e porque as propriedades térmicas dos materiais variam consideravelmente menos do que as propriedades hidráulicas, as medições de temperatura tendem a proporcionar estimativas melhor delimitadas de parâmetros de escoamento subterrâneo e de permeabilidade. Para além da perspectiva hidrogeológica, a delimitação da transferência de calor como advectiva ou condutiva pode também fornecer informação sobre intrusões magmáticas, metamorfismo, depósitos minerais, variabilidade climática e energia geotérmica.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Anderson MP (2005) Heat as a ground water tracer. Ground Water 43(6):951–968

    Article  Google Scholar 

  • Andrews JN, Burgess WG, Edmunds WM, Kay RLF, Lee DJ (1982) The thermal springs of Bath. Nature 298:339–343

    Article  Google Scholar 

  • Bear J (1979) Hydraulics of groundwater. McGraw-Hill, New York

  • Beltrami H, Ferguson G, Harris RN (2005) Long-term tracking of climate change by underground temperatures. Geophys Res Lett 32:L19707. doi:10.1029/2005GL023,714

  • Bense V, Beltrami H (2007) Impact of horizontal groundwater flow and localized deforestation on the development of shallow temperature anomalies. J Geophys Res 112:F04015. doi:10.1029/2006JF000,703

  • Bense V, Person M (2006) Faults as conduit-barrier systems to fluid flow in siliciclastic sedimentary aquifers. Water Resour Res 42:W05421. doi:10.1029/2005WR004,480

  • Bense V, Person M, Chaudhary K, You Y, Cremer N, Simon S (2008) Thermal anomalies indicate preferential flow along faults in unconsolidated sedimentary aquifers. Geophys Res Lett 35:L24406. doi:10.1029/2008GL036,017

  • Bense V, Ferguson G, Kooi H (2009) Evolution of shallow groundwater flow systems in areas of degrading permafrost. Geophys Res Lett 36:L22401. doi:10.1029/2009GL039,225

  • Birch F (1950) Flow of heat in the Front Range, Colorado. Bull Geol Soc Am 61:567–630

    Article  Google Scholar 

  • Blackwell DD (1985) A transient model of the geothermal system of Long Valley Caldera, California. J Geophys Res 90(B13):11229–11241

    Article  Google Scholar 

  • Blackwell DD (1992) Geothermal and geophysical data from the Santiam Pass 77-24 well. In: Hill BE (ed) Geology and geothermal resources of the Santiam Pass Area of the Oregon Cascade Range, Deschutes, Jefferson and Linn Counties, Oregon. Open-File Report 0-92-3, Oregon Department of Geology and Mineral Industries, Salem, OR, pp 37–52

  • Blackwell DD, Baker SL (1988) Thermal analysis of the Austin and Breitenbush geothermal systems, Western Cascades, Oregon. In: Sherrod DR (ed) Geology and geothermal resources of the Breitenbush-Austin Hot Springs area, Clackamas and Marion counties, Oregon. Open-File Report 0-88-5, Oregon Department of Geology and Mineral Industries, Salem, OR, pp 47–62

  • Blackwell DD, Priest GR (1996) Comment on “Rates and patterns of groundwater flow in the Cascades Range volcanic arc and the effect on subsurface temperatures” by S. E. Ingebritsen, D. R. Sherrod, and R. H. Mainer. J Geophys Res 101(B8):17561–17568

    Article  Google Scholar 

  • Blackwell DD, Richards M (2004) Geothermal map of North America. 1 sheet, scale 1:6,500,000, American Association of Petroleum Geologists (AAPG), Tulsa, OK

  • Blackwell DD, Steele JL, Brott CA (1980) The terrain effect on terrestrial heat flow. J Geophys Res 85(B9):4757–4772

    Article  Google Scholar 

  • Blackwell DD, Bowen RG, Hull DA, Riccio J, Steele JL (1982) Heat-flow, arc volcanism, and subduction in northern Oregon. J Geophys Res 87(10):8735–8754

    Article  Google Scholar 

  • Blackwell DD, Steele JL, Frohme MK, Murphey CF, Priest GR, Black GL (1990) Heat flow in the Oregon Cascade Range and its correlation with regional gravity, Curie point depths, and geology. J Geophys Res 95(B12):19475–19493

    Google Scholar 

  • Blythe AE, Kleinspehn KL (1998) Tectonically versus climatically driven Cenozoic exhumation of the Eurasian Plate margin, Svalbard: fission track analyses. Tectonics 17(4):621–639

    Article  Google Scholar 

  • Bodri B, Rybach L (1998) Influence of topographically driven convection on heat flow in the Swiss Alps: a model study. Tectonophysics 291:19–27

    Article  Google Scholar 

  • Bodvarsson GS, Benson SM, Witherspoon PA (1982) Theory of the development of geothermal systems charged by vertical faults. J Geophys Res 87(B11):9317–9328

    Article  Google Scholar 

  • Bravo H, Feng J, Hunt R (2002) Using groundwater temperature data to constrain parameter estimation in a groundwater flow model of a wetland system. Water Resour Res 38(8):1153 . doi:10.1029/2000WR000172

  • Bredehoeft JD (1967) Response of well-aquifer systems to Earth tides. J Geophys Res 72(12):3075–3087

    Article  Google Scholar 

  • Bredehoeft J, Papadopulos IS (1965) Rates of vertical groundwater movement estimated from the Earth’s thermal profile. Water Resour Res 1(2):325–328

    Article  Google Scholar 

  • Brott CA, Blackwell DD, Ziagos JP (1981) Thermal and tectonic implications of heat flow in the eastern Snake River Plain, Idaho. J Geophys Res 86(B12):11709–11734

    Article  Google Scholar 

  • Brumm M, Wang CY, Manga M (2009) Spring temperatures in the Sagehen Basin, Sierra Nevada, CA: implications for heat flow and groundwater circulation. Geofluids 9(3):195–207. doi:10.1111/j.1468–8123.2009.00,254.x

    Google Scholar 

  • Buck WR, Martinez F, Steckler MS, Cochran JR (1988) Thermal consequences of lithospheric extension: pure and simple. Tectonophysics 7(2):213–234

    Google Scholar 

  • Carslaw HS, Jaeger JC (1959) Conduction of heat in solids, 2nd edn. Oxford University Press, Oxford, UK

  • Cartwright K (1970) Groundwater discharge in the Illinois Basin as suggested by temperature anomalies. Water Resour Res 6(3):912–918

    Google Scholar 

  • Cermaka V, Bodrib L, Safanda J (2009) Tidal modulation of temperature oscillations monitored in borehole Yaxcopoil-1 (Yucatan, Mexico). Earth Planet Sci Lett 282(1–4):131–139

    Article  Google Scholar 

  • Christiansen LB, Hurwitz S, Saar MO, Ingebritsen SE, Hsieh PA (2005) Seasonal seismicity at western United States volcanic centers. Earth Planet Sci Lett 240(2):307–321

    Article  Google Scholar 

  • Clauser C, Griesshaber E, Neugebauer HJ (2002) Decoupled thermal and mantle helium anomalies: implications for the transport regime in continental rift zones. J Geophys Res 107. doi:10.1029/2001JB000,675

  • Constantz J (2008) Heat as a tracer to determine streambed water exchanges. Water Resour Res 44:W00D10. doi:10.1029/2008WR006,996

  • Coolbaugh M, Arehart G, Faulds J, Garside L (2005) Geothermal systems in the Great Basin, western United States: modern analogues to the role of magmatism, structure, and regional tectonics in the formation of gold deposits. Geological Society of Nevada Symposium 2005: Window to the World, Reno, Nevada, May 2005, pp 1063–1081

  • Darcy HPG (1856) Les fountaines publiques de la Ville de Dijon [The public fountains of the city of Dijon]. Dalmont, Paris

    Google Scholar 

  • Deming D (1993) Regional permeability estimates from investigations of coupled heat and groundwater flow, North Slope of Alaska. J Geophys Res 98:16271–16286

    Article  Google Scholar 

  • Deming D, Nunn J (1991) Numerical simulations of brine migration by topographically driven recharge. J Geophys Res 96(B2):2485–2499

    Article  Google Scholar 

  • Domenico PA, Palciauskas VV (1973) Theoretical analysis of forced convective heat transfer in regional ground-water flow. Geol Soc Am Bull 84:3803–3814

    Article  Google Scholar 

  • Ellis AJ, Wilson SH (1955) The heat from the Wairakei-Taupo thermal region calculated from the chloride output. NZ J Sci Technol B36:622–631

    Google Scholar 

  • Evans WC, van Soest MC, Mariner RH, Hurwitz S, Ingebritsen SE, Wicks CW Jr, Schmidt ME (2004) Magmatic intrusion west of Three Sisters, central Oregon, USA: the perspective from spring geochemistry. Geology 32(1):69–72

    Article  Google Scholar 

  • Fairley J, Hinds J (2004) Rapid transport pathways for geothermal fluids in an active Great Basin fault zone. Geology 32(9):825–828

    Article  Google Scholar 

  • Ferguson G, Beltrami H (2006) Transient lateral heat flow due to land-use changes. 242(1–2):217–222

  • Ferguson G, Woodbury AD (2007) Urban heat island in the subsurface. Geophys Res Lett 34:L23713. doi:10.1029/2007GL032,324

  • Ferguson G, Beltrami H, Woodbury AD (2006) Perturbation of ground surface temperature reconstruction by groundwater flow. Geophys Res Lett 33:L13708. doi:10.1020/2006GL026,634

  • Ferguson G, Grasby SE, Hindle SR (2009) What do aqueous geothermometers really tell us? Geofluids 9(1):39–48

    Article  Google Scholar 

  • Forster C, Smith L (1988a) Groundwater flow systems in mountainous terrain 1: numerical modeling technique. Water Resour Res 24(7):999–1010

    Article  Google Scholar 

  • Forster C, Smith L (1988b) Groundwater flow systems in mountainous terrain 2: controlling factors. Water Resour Res 24(7):1011–1023

    Article  Google Scholar 

  • Forster C, Smith L (1989) The influence of groundwater flow on thermal regimes in mountainous terrain: a model study. J Geophys Res 94:9439–9451

    Article  Google Scholar 

  • Fourier JBJ (1822) Theorie Analytique de la Chaleur [The analytical theory of heat]. Didot, Paris

    Google Scholar 

  • Freeze RA, Cherry JA (1979) Groundwater. Prentice Hall, Englewood Cliffs, NJ

    Google Scholar 

  • Furbish DJ (1997) Fluid physics in geology. Oxford University Press, Oxford, UK

  • Garven G, Freeze R (1984a) Theoretical analysis of the role of groundwater flow in the genesis of stratabound ore deposits. 1. Mathematical and numerical model. Am J Sci 284(10):1085–1124

    Article  Google Scholar 

  • Garven G, Freeze R (1984b) Theoretical analysis of the role of groundwater flow in the genesis of stratabound ore deposits. 2. Quantitative results. Am J Sci 284(10):1125–1174

    Article  Google Scholar 

  • Ge S (1998) Estimation of groundwater velocity in localized fracture zones from well temperature profiles. J Volcanol Geoth Res 84:93–101

    Article  Google Scholar 

  • Germanovich LN, Lowell RP, Astakhov DK (2000) Stress-dependent permeability and the formation of seafloor event plumes. JGR 105:8341–8354

    Article  Google Scholar 

  • Giardini D (2009) Geothermal quake risks must be faced. Nature 462:848–849

    Article  Google Scholar 

  • Gosnold WD (1985) Heat flow and ground water flow in the Great Plains of the United States. J Geodyn 4:247–264

    Article  Google Scholar 

  • Gosnold WD (1990) Heat flow in the Great Plains of the United States. J Geophys Res 95(B1):353–374

    Article  Google Scholar 

  • Gosnold WD (1999) Basin-scale groundwater flow and advective heat flow: an example from the Northern Great Plains. In: Basin analysis. Kluwer, Dordrecht, The Netherlands, pp 99–116

  • Herbert A, Jackson C, Lever D (1988) Coupled groundwater flow and solute transport with fluid density strongly dependent upon concentration. Water Resour Res 24(10):1781–1795

    Article  Google Scholar 

  • Hildreth W (2007) Quaternary magmatism in the Cascades; geologic perspectives. US Geol Surv Prof Pap P1744, 125 pp

  • Hilton D (2007) The leaking mantle. Science 318:1389–1390

    Article  Google Scholar 

  • Hsieh PA (1998) Scale effects in fluid flow through fractured geologic media. In: Sposito G (ed) Scale dependence and scale invariance in hydrology. Cambridge University Press, New York, pp 335–353

    Google Scholar 

  • Hsieh PA, Bredehoeft JD, Rojstaczer SA (1988) Response of well aquifer systems to Earth tides: problem revisited. Water Resour Res 24(3):468–472

    Article  Google Scholar 

  • Hurwitz S, Ingebritsen SE, Sorey ML (2002) Episodic thermal perturbations associated with groundwater flow: an example from Kilauea volcano, Hawaii. J Geophys Res 107:2297

    Google Scholar 

  • Hurwitz S, Goff F, Janik CJ, Evans WC, Counce DA, Sorey ML, Ingebritsen SE (2003a) Mixing of magmatic volatiles with groundwater and interaction with basalt on the summit of Kilauea Volcano, Hawaii. J Geophys Res 108(B1):ECV8.1–ECV8.12

    Google Scholar 

  • Hurwitz S, Kipp KL, Ingebritsen SE, Reid ME (2003b) Groundwater flow, heat transport, and water table position within volcanic edifices: implications for volcanic processes in the Cascade range. J Geophys Res 108:ECV1.1–ECV1.19. doi:10.1029/2003JB002,565

  • Hyun Y, Neuman SP, Vesselinov VV, Illman WA, Tartakovsky DM, Di Federico V (2002) Theoretical interpretation of a pronounced permeability scale effect in unsaturated fractured tuff. Water Resour Res 38(6):1092

    Google Scholar 

  • Ingebritsen SE, Manning C (2009) Permeability of the continental crust: dynamic variations inferred from seismicity and metamorphism. Geofluids 10:193–205. doi:10.1111/j.1468-8123.2010.00278.x

    Google Scholar 

  • Ingebritsen SE, Sherrod DR, Mariner RH (1989) Heat-flow and hydrothermal circulation in the Cascade Range, north-central Oregon. Science 243(4897):1458–1462

    Article  Google Scholar 

  • Ingebritsen SE, Sherrod DR, Mariner RH (1992) Rates and patterns of groundwater flow in the Cascade Range Volcanic Arc, and the effect on subsurface temperatures. J Geophys Res 97:4599–4627

    Article  Google Scholar 

  • Ingebritsen SE, Scholl MA, Sherrod DR (1993) Heat flow from four new research drill holes in the Western Cascades, Oregon, U.S.A. Geothermics 22(3):151–163

    Article  Google Scholar 

  • Ingebritsen SE, Mariner RH, Sherrod DR (1994) Hydrothermal systems of the Cascades Range, north-central Oregon. US Geol Surv Prof Pap 1044-L

  • Ingebritsen SE, Sherrod DR, Mariner RH (1996) Reply to comment on “Rates and patterns of groundwater flow in the Cascades Range volcanic arc and the effect on subsurface temperatures”. J Geophys Res 101(B8):17569–17576

    Article  Google Scholar 

  • Ingebritsen SE, Galloway DL, Colvard EM, Sorey ML, Mariner RH (2001) Time-variation of hydrothermal discharge at selected sites in the western United States: implications for monitoring. J Volcanol Geoth Res 111(1–4):1–23

    Article  Google Scholar 

  • Ingebritsen SE, Sanford W, Neuzil C (2006) Groundwater in geologic processes, 2nd edn. Cambridge University Press, Cambridge, UK

  • Ingebritsen SE, Geiger S, Hurwitz S, Driesner T (2010) Numerical simulation of magmatic hydrothermal systems. Rev Geophys 48:RG1002. doi:10.1029/2009RG000,287

  • James EW, Manga M, Rose TP, Hudson GB (2000) The use of temperature and the isotopes of O H C and noble gases to determine the pattern and spatial extent of groundwater flow. J Hydrol 237:100–112

    Article  Google Scholar 

  • Jessop AM (1989) Hydrological distortion of heat flow in sedimentary basins. Tectonophysics 164:211–218

    Article  Google Scholar 

  • Keller GV, Grose LT, Murray JC, Skokan CK (1979) Results of an experimental drill hole at the summit of Kilauea Volcano, Hawaii. J Volcanol Geoth Res 5(3–4):345–385

    Article  Google Scholar 

  • Kennedy B, van Soest M (2007) Flow of mantle fluids through the ductile lower crust: helium isotope trends. Science 318:1433–1436

    Article  Google Scholar 

  • Kestin J, Khalifa H, Correia R (1981) Tables of the dynamic and kinematic viscosity of aqueous NaCl solutions in the temperature range 20–150°C and the pressure range 0.1–35 MPa. J Phys Chem Ref Data 10(1):71–87

    Article  Google Scholar 

  • Lachenbruch AH (1968) Rapid estimation of the topographic disturbance to superficial thermal gradients. Rev Geophys 6(3):365–400

    Article  Google Scholar 

  • Lachenbruch AH, Marshall BV (1986) Changing climate: geothermal evidence from permafrost in the Alaskan Arctic. Science 234(4777):689–696

    Article  Google Scholar 

  • López DL, Smith L (1995) Fluid flow in fault zones: analysis of the interplay of convective circulation and topographically driven groundwater flow. Water Resour Res 31(6):1489–1503

    Article  Google Scholar 

  • López DL, Smith L (1996) Fluid flow in fault zones: influence of hydraulic anisotropy and heterogeneity on the fluid flow and heat transfer regime. Water Resour Res 32(10):3227–3235

    Article  Google Scholar 

  • Lu N, Ge S (1996) Effect of horizontal heat and fluid flow on the vertical temperature distribution in a semiconfining layer. Water Resour Res 32(5):1449–1453

    Article  Google Scholar 

  • Manga M (1998) Advective heat transport by low-temperature discharge in the Oregon Cascades. Geology 26(9):799–802

    Article  Google Scholar 

  • Manga M (2001) Using springs to study groundwater flow and active geologic processes. Annu Rev Earth Planet Sci 29:201–228

    Article  Google Scholar 

  • Manga M, Kirchner JW (2004) Interpreting the temperature of water at cold springs and the importance of gravitational potential energy. Water Resour Res 40(5):W05110.1–W05110.8. doi:10.1029/2004WR002,905

  • Manning CE, Ingebritsen SE (1999) Permeability of the continental crust: implications of geothermal data and metamorphic systems. Rev Geophys 37:127–150

    Article  Google Scholar 

  • McCord J, Reiter M, Phillips F (1992) Heat-flow data suggest large ground-water fluxes through Fruitland coals of the northern San Juan basin, Colorado-New Mexico. Geology 20:419–422

    Article  Google Scholar 

  • McKenna JR, Blackwell DD (2004) Numerical modeling of transient basin and range extensional geothermal systems. Geothermics 33(4):457–476

    Article  Google Scholar 

  • McKenzie J, Voss C, Siegel D (2007) Groundwater flow with energy transport and water-ice phase change: numerical simulations, benchmarks, and application to freezing in peat bogs. Adv Water Resour 30(4):966–983

    Article  Google Scholar 

  • Meinzer OE (1927) Large springs in the United States. US Geol Surv Water Supp Pap 557:94

    Google Scholar 

  • Myre J, Walsh SDC, Lilja DJ, Saar MO (2010) Performance analysis of single-phase, multiphase, and multicomponent lattice-Boltzmann fluid flow simulations on GPU clusters. Concurrency Computat Pract Exper. doi:10.1002/cpe.1645

  • Perkins TK, Johnston OC (1963) A review of diffusion and dispersion in porous media. Soc Pet Eng J 3:70–83

    Google Scholar 

  • Person M, Mulch A, Teyssier C, Gao Y (2007) Isotope transport and exchange within metamorphic core complexes. Am J Sci 307. doi:10.247/03.2007.01

  • Person M, Banerjee A, Hofstra A, Sweetkind D, Gao Y (2008) Hydrologic models of modern and fossil geothermal systems in the Great Basin: genetic implications for epithermal Au–Ag and Carlin-type gold deposits. Geosphere 4(5):888–917

    Article  Google Scholar 

  • Phillips OM (1991) Flow and reactions in permeable rocks. Cambridge University Press, New York

    Google Scholar 

  • Poage MA, Chamberlain CP (2001) Empirical relationships between elevation and the stable isotope composition of precipitation and surface waters: considerations for studies of paleoelevation change. Am J Sci 301(1):1–15

    Article  Google Scholar 

  • Pollack HN, Huang S (2000) Climate reconstruction from subsurface temperatures. Annu Rev Earth Planet Sci 28:339–365

    Article  Google Scholar 

  • Pollack HN, Hurter SJ, Johnson JR (1993) Heat-flow from the Earth’s interior: analysis of the global data set. Rev Geophys 31(3):267–280

    Article  Google Scholar 

  • Pollack HN, Smerdon J, Keken PE (2005) Variable seasonal coupling between air and ground temperatures: a simple representation in terms of subsurface thermal diffusivity. Geophys Res Lett 32:L15405. doi:10.1029/2005GL023,869

  • Randolph J, Saar M (2010) Coupling geothermal energy capture with carbon dioxide sequestration in naturally permeable, porous geologic formations: a comparison with enhanced geothermal systems. GRC Transaction, Geothermal Resources Council, Davis, CA

  • Rath V, Wolf A, Bücker H (2006) Joint three-dimensional inversion of coupled ground-water flow and heat transfer based on automatic differentiation: sensitivity calculation, verification, and synthetic examples. Geophys J Int 167(1):453–466

    Article  Google Scholar 

  • Rinehart JS (1972) Fluctuations in geyser activity caused by variations in Earth tidal forces, barometric pressure, and tectonic stresses. J Geophys Res 77(2):342–350

    Article  Google Scholar 

  • Rye DM, Roy RF (1978) The distribution of thorium, uranium, and potassium in Archean Granites from northeastern Minnesota. Am J Sci 278:354–378

    Article  Google Scholar 

  • Saar MO, Manga M (1999) Permeability-porosity relationship in vesicular basalts. Geophys Res Lett 26(1):111–114

    Article  Google Scholar 

  • Saar MO, Manga M (2003) Seismicity induced by seasonal groundwater recharge at Mt. Hood, Oregon. Earth Planet Sci Lett 214(3–4):605–618

    Article  Google Scholar 

  • Saar MO, Manga M (2004) Depth dependence of permeability in the Oregon Cascades inferred from hydrogeologic, thermal, seismic, and magmatic modeling constraints. J Geophys Res 109:B04204. doi:10.1029/2003JB002855

    Article  Google Scholar 

  • Saar MO, Castro MC, Hall CM, Manga M, Rose TP (2005) Quantifying magmatic, crustal, and atmospheric helium contributions to volcanic aquifers using all stable noble gases: implications for magmatism and groundwater flow. Geochem Geophys Geosys 6(3):Q03008. doi:10.1029/2004GC000828

    Article  Google Scholar 

  • Sánchez-Vila X, Carrera J, Girardi J (1996) Scale effects in transmissivity. J Hydrol 183(1–2):1–22

    Article  Google Scholar 

  • Sass JH, Lachenbruch AH, Munroe RJ (1971) Thermal conductivity of rocks from measurements on fragments and its application to heat-flow determinations. J Geophys Res 76:3391–3401

    Article  Google Scholar 

  • Smerdon JE, Pollack HN, Enz JW, Lewis MJ (2003) Conduction-dominated heat transport of the annual temperature signal in soil. J Geophys Res 108(B9). doi:10.1029/2002JB002,351

  • Smith L, Chapman DS (1983) On the thermal effects of groundwater flow 1: regional scale systems. J Geophys Res 88:593–608

    Article  Google Scholar 

  • Smith L, Chapman D (1985) The influence of water table configuration on the near-surface thermal regime. J Geodyn 4:183–198

    Article  Google Scholar 

  • Sorey ML (1971) Measurement of vertical groundwater velocity from temperature profiles in wells. Water Resour Res 7(4):963–970

    Article  Google Scholar 

  • Sorey ML (1976) A model of the hydrothermal system of Long Valley Caldera, California. Paper presented at the Second Workshop on Geothermal Reservoir Engineering. Stanford University, Stanford, CA, December 1976

    Google Scholar 

  • Sorey ML, Lewis RE, Olmsted FH (1978) The hydrothermal system of Long Valley Calderra, California. US Geol Surv Prof Pap 1044-A

  • Stallman RW (1963) Computation of ground-water velocity from temperature data. In: Bentall R (ed) Methods of collecting and interpreting ground-water data. US Geol Surv Water Suppl Pap 1544-H. pp 36–46

  • Stallman RW (1965) Steady one-dimensional fluid flow in a semi-infinite porous medium with sinusoidal surface temperature. J Geophys Res 70(12):2821–2827

    Article  Google Scholar 

  • Steele JL, Blackwell DD (1982) Heat flow in the vicinity of the Mount Hood volcano, Oregon. In: Priest GR, Vogt BF (eds) Geology and geothermal resources of the Mount Hood area, Oregon. Special paper 14. Oregon Department of Geology and Mineral Industries, Portland, OR, pp 31–42

    Google Scholar 

  • Stonestrom DA, Constantz J (2003) Heat as a tool for studying the movement of ground water near streams. US Geol Surv Circ 1260, 96 pp

    Google Scholar 

  • Suzuki S (1960) Percolation measurements based on heat flow through soil with special reference to paddy fields. J Geophys Res 65(9):2883–2885

    Article  Google Scholar 

  • Taniguchi M (1993) Evaluation of vertical groundwater fluxes and thermal properties of aquifers based on transient temperature-depth profiles. Water Resour Res 29(7):2021–2026

    Article  Google Scholar 

  • Taniguchi M (1994) Estimated recharge rates from groundwater temperatures in the Nara Basin, Japan. Hydrogeol J 2(4)7–14. doi:10.1007/s100400050,031

  • Taniguchi M, Shimada J, Tanaka T, Kayane I, Sakura Y, Shimano Y, Dapaah-Siakwan S, Kawashima S (1999a) Disturbances of temperature-depth profiles due to surface climate change and subsurface water flow: 1, an effect of linear increase in surface temperature caused by global warming and urbanization in the Tokyo metropolitan area, Japan. Water Resour Res 35(5):1507–1517

    Article  Google Scholar 

  • Taniguchi M, Williamson DR, Peck AJ (1999b) Disturbances of temperature-depth profiles due to surface climate change and subsurface water flow: 2, an effect of step increase in surface temperature caused by forest clearing in southwest-western Australia. Water Resour Res 35(5):1519–1529

    Article  Google Scholar 

  • Tester J (2007) The future of geothermal energy: impact of enhanced geothermal systems (EGS) on the United States in the 21st Century. Technical report, Massachusetts Institute of Technology, Boston

  • Turcotte DL, Schubert G (2002) Geodynamics. Cambridge University Press, Cambridge, UK

  • Tyler S, Selker J, Hausner M, Hatch C, Torgersen T, Thodal C, Schladow S (2009) Environmental temperature sensing using Raman spectra DTS fiber-optic methods. Water Resour Res 45:W00D23. doi:10.1029/2008WR007,052

  • Walsh SDC, Saar MO (2010) Macroscale lattice-Boltzmann methods for low Peclet number solute and heat transport in heterogeneous porous media. Water Resour Res 46:W07517. doi:10.1029/2009WR007895

  • Walsh SDC, Saar MO, Bailey P, Lilja DJ (2009) Accelerating geoscience and engineering system simulations on graphics hardware. Comput Geosci 35(12):2353–2364

    Article  Google Scholar 

  • Walvoord M, Striegl R (2007) Increased groundwater to stream discharge from permafrost thawing in the Yukon River basin: potential impacts on lateral export of carbon and nitrogen. Geophys Res Lett 34:L12402. doi:10.1029/2007GL030,216

  • Wisian KW, Blackwell DD, Bellani S, Henfling JA, Normann RA, Lysne PC, Foerster A, Schroetter J (1998) Field comparison of conventional and new technology temperature logging systems. Geothermics 27(2):131–141

    Article  Google Scholar 

  • Woodbury AD, Smith L (1985) On the thermal effects of three-dimensional groundwater flow. J Geophys Res 90(B1):759–767

    Article  Google Scholar 

  • Woodbury AD, Smith L (1988) Simultaneous inversion of hydrogeologic and thermal data: 2. incorporation of thermal data. Water Resour Res 24(3):356–372

    Article  Google Scholar 

  • Woodbury AD, Smith L, Dunbar WS (1987) Simultaneous inversion of hydrogeologic and thermal data: 1. theory and application using hydraulic head data. Water Resour Res 23(8):1586–1606

    Article  Google Scholar 

  • Zablocki CJ, Tilling RI, Peterson DW, Christiansen RL, Keller GV, Murray JC (1974) A deep research drill hole at the summit of an active volcano, Kilauea, Hawaii. Geophys Res Lett 1(7):323–326

    Article  Google Scholar 

  • Zeitler PK, Koons PO, Bishop MP, Chamberlain CP, Craw D, Edwards MA, Hamidullah S, Jan MQ, Khan MA, Khattak MUK, Kidd WSF, Mackie RL, Meltzer AS, Park SK, Pecher A, Poage MA, Sarker G, Schneider DA, Seeber L, Shroder JF (2001) Crustal reworking at Nanga Parbat, Pakistan: metamorphic consequences of thermal-mechanical coupling facilitated by erosion. Tectonics 20(5):712–728

    Article  Google Scholar 

  • Ziagos JP, Blackwell DD (1986) A model for the transient temperature effects of horizontal fluid flow in geothermal systems. J Volcanol Geoth Res 27:371–397

    Article  Google Scholar 

Download references

Acknowledgements

The author thanks the generous support of the Hydrogeology and Geofluids Research Group by the George and Orpha Gibson endowment. Support for this contribution and related research is acknowledged from the National Science Foundation (NSF) under Grant Numbers EAR-0838541, DMS-0724560, and EAR-0941666 and from the Department of Energy (DOE) under Grant Number DE-EE0002764. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author and do not necessarily reflect the views of the NSF or the DOE. The data for Fig. 11 were collected and processed by C. Farrar (USGS), S. Hurwitz (USGS), and J. Randolph (University of Minnesota) whose help and collaboration in coupled groundwater and geothermal heat transfer research is greatly appreciated. S. Walsh and J. Randolph are also thanked for their internal reviews of an early version of this manuscript. S. Ingebritsen and M. Person are thanked for their excellent, in-depth, and thoughtful reviews that greatly improved this paper and Editor W. Sanford for handling the review and revision process for this paper in an efficient yet patient manner.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin O. Saar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Saar, M.O. Review: Geothermal heat as a tracer of large-scale groundwater flow and as a means to determine permeability fields. Hydrogeol J 19, 31–52 (2011). https://doi.org/10.1007/s10040-010-0657-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10040-010-0657-2

Keywords

Navigation