Skip to main content

Advertisement

Log in

Non-isothermal, multi-phase, multi-component flows through deformable methane hydrate reservoirs

  • ORIGINAL PAPER
  • Published:
Computational Geosciences Aims and scope Submit manuscript

Abstract

We present a hydro-geomechanical model for subsurface methane hydrate systems. Our model considers kinetic hydrate phase change and non-isothermal, multi-phase, multi-component flow in elastically deforming soils. The model accounts for the effects of hydrate phase change and pore pressure changes on the mechanical properties of the soil. It also accounts for the effect of soil deformation on the fluid-solid interaction properties relevant to reaction and transport processes (e.g., permeability, capillary pressure, and reaction surface area). We discuss a ’cause-effect’ based decoupling strategy for the model and present our numerical discretization and solution scheme. We then proceed to identify the important model components and couplings which are most vital for a hydro-geomechanical hydrate simulator, namely, (1) dissociation kinetics, (2) hydrate phase change coupled with non-isothermal two phase two component flow, (3) two phase flow coupled with linear elasticity (poroelasticity coupling), and finally (4) hydrate phase change coupled with poroelasticity (kinetics-poroelasticity coupling). To show the versatility of our hydrate model, we numerically simulate test problems where, for each problem, we methodically isolate one out of the four aforementioned model components or couplings. A special emphasis is laid on the kinetics-poroelasticity coupling for which we present a test problem where an axially loaded hydrate bearing sand sample experiences a spontaneous shift in the hydrate stability curve causing the hydrate to melt. For this problem, we present an analytical solution for pore-pressure, which we subsequently use to test the accuracy of the numerical scheme. Finally, we present a more complex 3D example where all the major model components are put together to give an idea of the model capabilities. The setting is based on a subsurface hydrate reservoir which is destabilized through depressurization using a low pressure gas well. In this example, we simulate the melting of hydrate, methane gas generation, and the resulting ground subsidence and stress build-up in the vicinity of the well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

\(\chi ^{\kappa }_{\alpha }\) :

Mole fraction of component κ = C H 4,H 2 O in phase α=g,w

\(\dot g^{CH_{4}}\) :

C H 4 generation rate

\(\dot g^{H_{2}O}\) :

H 2 O generation rate

\(-\dot g^{Hyd}\), \(-\dot g^{h}\) :

Hydrate consumption rate

\(\dot Q_{h}\) :

Heat of hydrate phase change

\(\dot q_{m_{\alpha }}^{\kappa }\) :

Volumetricinjection rate for phase α = g,w

𝜖 :

Volumetric or isotropic strain

g :

Gravity vector

\(\mathbf {J}_{\alpha }^{\kappa }\) :

Diffusion flux of component κ = C H 4,H 2 O in phase α=g,w

u :

Sediment displacement vector

v s :

Sediment displacement velocity

v β,t :

Total phase velocity

v β :

Phase velocity relative to the sediment

μ α :

Dynamic viscocity of phase α=g,w

ν s h :

Poisson ratio for composite solid

ϕ :

Actual or total porosity

ϕ e f f :

Apparent or effective porosity

ρ γ :

Density of phase γ=g,w,h,s

ρ s h :

Density of composite solid

\(\sigma , \sigma ^{\prime }\) :

Isotropic total and effective stresses

τ :

Tortuosity

\(\tilde \epsilon \) :

strain tensor

\(\tilde {\sigma },\tilde {\sigma }^{\prime }\) :

Total and effective stress tensors

A r s :

Specific reaction area

A s :

Specific surface area of hydrate-bearing sediment

B γ :

Bulk modulus of phases γ=g,w,h,s

B m :

Bulk modulus of bulk REV

B s h :

Bulk modulus of composite matrix

C p α :

Specific heat capacity at constant pressure of phase α=g,w

C v γ :

Specific heat capacity at constant volume of phase γ=g,w,h,s

D α :

Binary diffusion constant in phase α=g,w

E h ,E s :

Young’s modulus for hydrate and soil

E s h :

Young’s modulus for composite solid

f g :

Gas phase fugacity

G s h ,λ s h :

Lame’s parameters

h α :

Flow enthalpy of phase α=g,w

H :

Henry’s constant for methane

K :

Intrinsic permeability of hydrate bearing sediment

\(k^{c}_{\gamma }\) :

Thermal conductivity of phase γ=g,w,h,s

\(k^{c}_{eff}\) :

Lumped thermal conductivity of the REV

k d :

Hydrate dissociation rate constant

k r α :

Relative permeability of phase α=g,w

k r e a c :

Rate constant for kinetic phase change of hydrate

M κ :

Molar mass of component κ = H 2 O ,C H 4 ,H y d

N H y d , N h :

Hydration number

\(P^{sat}_{H_{2}O}\) :

Saturated water vapor pressure

P α :

Pressure of phase α=g,w

P c :

Capillary pressure

P e , P e q b :

Equilibrium pressure for hydrate phase

P e f f :

Effective fluid pressure

R u :

Universal gas constant

S α r :

Effective aqueous phase saturation

S β :

Saturation of phase β=g,w,h

T :

Temperature

u γ :

Internal energy of phase γ=g,w,h,s

References

  1. Ahmadi, G., Ji, C., Duane, H.S.: Numerical solution for natural gas production from methane hydrate dissociation. J. Pet. Sci. Eng. 41, 169–185 (2004)

    Article  Google Scholar 

  2. Ahrens, J., Geveci, B., Law, C.: ParaView: an end-user tool for large data visualization, visualization handbook. Elsevier (2005) ISBN-13: 978-0123875822

  3. Atkins, P., de Paula, J.: Physical Chemistry, 8 edn. Oxford University Press (2006)

  4. Bai, Y., Li, Q., Zhao, Y., Li, X., Du, Y.: The experimental and numerical studies on gas production from hydrate reservoir by depressurization. Transp. Porous Med. 79, 443–468 (2009)

    Article  Google Scholar 

  5. Bastian, P., Blatt, M., Dedner, A., Engwer, C., Klöfkorn, R., Kornhuber, R., Ohlberger, M., Sander, O.: A generic grid interface for parallel and adaptive scientific computing. Part II: Implementation and Tests in DUNE, preprint, no. 404. DFG Research Center MATHEON (2007)

  6. Bear, J.: Dynamics of fluids in porous media. Elsevier, New York (1972)

    Google Scholar 

  7. Biot, M.A., Willis, D.G.: The elastic coefficients of the theory of consolidation. J. Appl. Mech. 24, 594–601 (1957)

    Google Scholar 

  8. Kim, H.C., Bishnoi, P.R., Heidemann, R.A., Rizvi: Kinetics of methane hydrate decomposition. Chem. Eng. Sci. 42, 1645–1653 (1987)

    Article  Google Scholar 

  9. Brooks, R.H., Corey, A.T.: Hydraulic properties of porous media. Hydrology Papers, Colorado State University, Fort Collins 3, 24 (1964)

  10. Burdine, N.T.: Relative permeability calculations from pore-size distribution data. Technical report, Petroleum Transanctions, AIME (1953)

  11. Civan, F.: Predictability of porosity and permeability alterations by geochemical and geomechanical rock and fluid interactions, SPE 58746. In: Proceedings of the SPE International Symposium on Formation Damage. Lafayette, Louisiana (2000)

  12. Clement, T.P., Hooker, B.S., Skeen, R.S.: Macroscopic models for predicting changes in saturated porous media properties caused by microbial growth. Ground Water 34, 934–942 (1996)

    Article  Google Scholar 

  13. Dawe, R.A., Thomas, S.: A large potential methane source—natural gas hydrates. Energ. Source Part A 29, 217–229 (2007)

    Article  Google Scholar 

  14. Demmel, J.W., Gilbert, J.R., Li, X.S.: SuperLU Users Guide. Technical Report LBNL-44289, Lawrence Berkeley National Laboratory, September 1999. http://crd-legacy.lbl.gov/xiaoye/SuperLU/. Last update: September 2007

  15. Hassanizadeh, M.: Derivation of basic equations of mass transport in porous media, part 2: Generalized Darcy’s and Ficks’s laws. Adv. Water Resour. 9, 207–222 (1986)

    Article  Google Scholar 

  16. Helmig, R.: Multiphase Flow and transport processes in the subsurface: a contribution to the modeling of hydrosystems. Springer-Verlag, Berlin (1997)

    Book  Google Scholar 

  17. Himmelblau, D.M.: Diffusion of dissolved gases in liquids. Chem. Rev. 64(5), 527–550 (1964)

    Article  Google Scholar 

  18. Hyodo, M., Nakata, Y., Yoshimoto, N., Ebinuma, T.: Basic research on the mechanical behaviour of methane hydrate sediments mixture. Soils. Found. 45(1), 75–85 (2005)

    Google Scholar 

  19. Hyodo, M., Li, Y., Yoneda, J., Nakata, Y., Yoshimoto, N., Nishimura, A.: Effects of dissociation on the shear strength and deformation behavior of methane hydrate-bearing sediments. Marine Petrol. Geol. 51, 52–62 (2014)

    Article  Google Scholar 

  20. Itasca, FLAC3D, Fast lagrangian analysis of continua in 3 dimensions, Version 4.0, Itasca Consulting Group, Minneapolis, Minnesota, 438pp (2009)

  21. Kamath, V.A., Holder, G.D.: Dissociation heat transfer characteristics of methane hydrates. AIChE J. 33, 347–350 (1987)

    Article  Google Scholar 

  22. Kimoto, S., Oka, F., Fushita, T.: A chemo-thermo-mechanically coupled analysis of ground deformation induced by gas hydrate dissociation. Int. J. Mech. Sci. 52(2), 365–376 (2010)

    Article  Google Scholar 

  23. Klar, A., Soga, K., Ng, Y.A.: Coupled deformation-flow analysis for methane hydrate extraction. Géotechnique 60, 765–776 (2010)

    Article  Google Scholar 

  24. Kolditz, O., Görke, U.J., Shao, H., Wang, W.: Thermo-hydro-mechanical-chemical processes in porous media: Benchmarks and examples, lecture notes in computational science and engineering. Springer, Berlin Heidelberg (2012). ISBN:9783642271779

    Book  Google Scholar 

  25. Lee, J.Y., Francisca, F.M., Santamarina, J.C., Ruppel, C.: Parametric study of the physical properties of hydrate-bearing sand, silt and clay sediments: 2. small-strain mechanical properties. J. Geophys. Res. 115, B11105 (2010). doi: 10.1029/2009JB006670

    Article  Google Scholar 

  26. Lewis, R.W., Schrefler, B.A.: The finite element method in the static and dynamic deformation and consolidation of porous media, 2nd edn. Wiley, England (2000)

    Google Scholar 

  27. Liu, X., Flemings, P.B.: Dynamic multiphase flow model of hydrate formation in marine sediments. J. Geophys. Res. 112, B03101 (2007)

    Google Scholar 

  28. Masui, A., Haneda, H., Ogata, Y., Aoki, K.: Triaxial compression test on submarine sediment containing methane hydrate in deep sea off the coast of Japan (in Japanese), paper presented at the 41st Annual Conference, Jpn. Geotech. Soc., Kagoshima, Japan (2006)

  29. Milkov, A.V.: Global estimates of hydrate-bound gas in marine sediments: How much is really out there? tEarth-Sci. Rev. 66, 183–197 (2004)

    Article  Google Scholar 

  30. Miyazaki, K., Masui, A., Sakamoto, Y., Aoki, K., Tenma, N., Yamaguchi, T.: Triaxial compressive properties of artificial methane-hydrate-bearing sediment. J. Geophys. Res. 116, B06102 (2011). doi: 10.1029/2010JB008049

    Google Scholar 

  31. Moridis, G.J.: Numerical studies of gas productionfrom methane hydrates. SPE 87330, SPE J. 32(8), 359–370 (2003)

    Article  Google Scholar 

  32. Moridis, G.J., Kowalsky, M., Pruess, K.: Depressurization-inducedgas production from class-I hydrate deposits. SPE J. Reservoir Evaluation Engng. 10(5), 458–481 (2007)

    Article  Google Scholar 

  33. Mualem, Y.: A new model for predicting the hydraulic conductivity of unsaturated porous media. Water Resour. Res. 12(3), 513–522 (1976)

    Article  Google Scholar 

  34. Peng, D.Y., Robinson, D.B.: A new two-constant equation of state. In: 4th Intl. Heat Transfer Conf., Paris-Versailles, Heat Transfer 1970, 4, paper B.7.b. (1970)

  35. Wei, Y.S., Sadus, R.J.: Equations of state for the calculation of fluid-phase equilibria. AIChE J 46, 169–196 (2000)

    Article  Google Scholar 

  36. Rockhold, M.L., Yarwood, R.R., Niemet, M.R., Bottomley, P.J., Selker, J.S.: Considerations for modelling bacterial-induced changes in hydraulic properties of variably sarurated porous media. Adv. Water Resour. 25, 477–495 (2002)

    Article  Google Scholar 

  37. Rutqvist, J., Moridis, G.J.: Development of a numerical simulator for analyzing the geomechanical performance of hydrate-bearing sediments. In: Proceedings of the 42nd U.S. Rock Mechanics Symposium. San Francisco (2008) American Rock Mechanics Association, ARMA, Paper No. 139

  38. Sander, R.: Henry’s law constants. In: Linstrom, P.J., Mallard, W.G. (eds.) NIST Chemistry WebBook, NIST Standard Reference Database Number 69. National Institute of Standards and Technology, Gaithersburg MD, 20899, http://webbook.nist.gov, (retrieved February 23, 2015)

  39. Santamarina, J.C., Ruppel, C.: The impact of hydrate saturation on the mechanical, electrical, and thermal properties of hydrate-bearing sand, silts, and clay. In: Riedel, M., Willoughby, C., Chopra, S. (eds.) Geophysical Characterization of Gas Hydrates, Geophys. Dev. Ser., vol. 14, pp. 373–384. Tulsa, Okla (2010)

  40. Sloan, E.D.: Gas hydrates: Review of physical/chemical properties. Energ. Fuel. 12, 191–196 (1998)

    Article  Google Scholar 

  41. Soga, K., Lee, S.L., Ng, M.Y.A., Klar, A.: Characterisation and engineering properties of methane hydrate soils. In: Tan, T. S., et al., Balkema, A.A., Lisse (eds.) Characterisation and Engineering Properties of Natural Soils, pp. 2591–2642. Netherlands (2006)

  42. Stattery, J.C., Bird, R.B.: Calculation of diffusion coefficient of dilute gases and of the self diffusion coefficient of dense gases. AIChE J. 4(2), 137–142 (1958)

    Article  Google Scholar 

  43. Sultan, N.C., Canals, P., Cattaneo, M., Dennielou, A., Haflidason, B., Laberg, H., Long, J.S., Mienert, D., Trincardi, J., Urgeles, F., Vorren, R.T.O., Wilson, C.: Triggering mechanisms of slope instability processes and sediment failures on continental margins: A geotechnical approach. Mar. Geol. 213(1–4), 291–321 (2004a)

    Article  Google Scholar 

  44. Sultan, N.C., Foucher, P.J.P., Mienert, J.: Effect of gashydrates melting on sea floor slope instability. Mar. Geol. 213(1), 379–401 (2004b)

    Article  Google Scholar 

  45. Sun, F.X., Mohanty, K.K., Nanchary, N.: 1-D modelling of hydrate depressurization in porous media. Transp. Porous Med. 58, 315–338 (2005)

    Article  Google Scholar 

  46. Sun, F.X., Mohanty, K.K.: Kinetic simulation of methane hydrate formation and dissociation in porous media. Chem. Eng. Sci. 61, 3476–3495 (2006)

    Article  Google Scholar 

  47. Tang, L.G., Li, X.S.: Z.P. Feng., et. al., Control mechanisms for gas hydrate production by depressurization in different scale hydrate reservoirs. Energy Fuels 21(1), 227–233 (2007)

    Article  Google Scholar 

  48. Terzaghi, K.: Erdbaumechanik auf bodenphysikalischer Grundlage. Deuticke, Wien (1925)

  49. Tsypkin, G.G.: Effect of liquid phase mobility on gas hydrate dissociation in reservoirs. Izvestiya Akad. Nauk SSSR Mekh. Zhidkosti i Gaza 4, 105–114 (1991)

    Google Scholar 

  50. Verruijt, A.: Theory and problems of poroelasticity (2013)

  51. Waite, W.F., et al.: Physical properties of hydrate-bearing sediments. Rev. Geophys. 47, RG4003 (2009). doi: 10.1029/2008RG000279

    Article  Google Scholar 

  52. Yousif, M.H.: Experimental and theoretical investigation of methane-gas-hydrate dissociation in porous media. SPE Reserv. Eng., 69–76 (1991)

  53. Moridis, G.J., Kowalsky, M.B., Pruess, K.: TOUGHFx/ HYDRATE v1.0 User?s manual: a code for the simulation of system behaviour in hydrate-bearing geologic media. Earth Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California (2008)

  54. Kurihara, M., Sato, A., Ouchi, H., Narita, H., Masuda, Y., Saeki, T., Fujii, T.: Prediction of gas productivity from Eastern Nankai Trough methane-hydrate reservoirs. SPE125481, SPE Reservoir Eval. Eng. 12, 477–499 (2009)

  55. White, M.D., McGrail, B.P.: STOMP-HYD: a new numerical simulator for analysis of methane hydrate production from geologic formations. In: Proceedings of 2nd International Symposium on Gas Hydrate Technology. KIGAM, Daejeon, Korea (2006)

  56. Janicki, G., Schlter, S., Hennig, To., Lyko, H., Deerberg, G.: Simulation of Methane Recovery from Gas Hydrates Combined with Storing Carbon Dioxide as Hydrates. J. Geol. Res. 2011(462156), 15 (2011). doi:10.1155/2011/462156

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shubhangi Gupta.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gupta, S., Helmig, R. & Wohlmuth, B. Non-isothermal, multi-phase, multi-component flows through deformable methane hydrate reservoirs. Comput Geosci 19, 1063–1088 (2015). https://doi.org/10.1007/s10596-015-9520-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10596-015-9520-9

Keywords

Mathematics Subject Classifications (2010)

Navigation