Skip to main content

Advertisement

Log in

Stability of a numerical scheme for methane transport in hydrate zone under equilibrium and non-equilibrium conditions

  • Original Paper
  • Published:
Computational Geosciences Aims and scope Submit manuscript

Abstract

In this paper we carry out numerical analysis for a family of simplified gas transport models with hydrate formation and dissociation in subsurface, in equilibrium and non-equilibrium conditions. These models are adequate for simulation of hydrate phase change at basin and at shorter time scales, but the analysis does not account directly for the related effects of evolving hydraulic properties. To our knowledge this is the first analysis of such a model. It is carried out for the transport steps while keeping the pressure solution fixed. We frame the transport model as conservation law with a non-smooth space-dependent flux function; the kinetic model approximates this equilibrium. We prove weak stability of the upwind scheme applied to the regularized conservation law. We illustrate the model, confirm convergence with numerical simulations, and illustrate its use for some relevant equilibrium and non-equilibrium scenarios.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. The National Methane Hydrates R&D Program Methane Hydrate Reservoir Simulator Code Comparison Study, http://www.netl.doe.gov/technologies/oil-gas/FutureSupply/MethaneHydrates/MH_CodeCompare/MH_CodeCompare.html. Accessed 1 May 2020

  2. The National Methane Hydrates R&D Program, http://www.netl.doe.gov/technologies/oil-gas/FutureSupply/MethaneHydrates/maincontent.htm. Accessed 1 May 2020

  3. Almani, T., Kumar, K., Dogru, A., Singh, G., Wheeler, M.F.: Convergence analysis of multirate fixed-stress split iterative schemes for coupling flow with geomechanics. Comput. Methods Appl. Mech. Eng. 311, 180–207 (2016)

    Article  Google Scholar 

  4. Berndt, C., Feseker, T., Treude, T., Krastel, S., Liebetrau, V., Niemann, H., Bertics, V.J., Dumke, I., Dunnbier, K., Ferre, B., et al.: Temporal constraints on hydrate-controlled methane seepage off Svalbard. Science. 343(6168), 284–287 (2014)

    Article  Google Scholar 

  5. H. Brézis. Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert. North-Holland Publishing Co., Amsterdam, 1973. North-Holland Mathematics Studies, No. 5. Notas de Matemática (50)

  6. Cao, Y., Chen, D., Cathles, L.M.: A kinetic model for the methane hydrate precipitated from venting gas at cold seep sites at hydrate ridge, Cascadia margin, Oregon. J. Geophys. Res. Solid Earth. 118(9), 4669–4681 (2013)

    Article  Google Scholar 

  7. Clarke, M.A., Bishnoi, P.R.: Measuring and modelling the rate of decomposition of gas hydrates formed from mixtures of methane and ethane. Chem. Eng. Sci. 56(16), 4715–4724 (2001)

    Article  Google Scholar 

  8. Clennell, M.B., Hovland, M., Booth, J.S., Henry, P., Winters, W.: Formation of natural gas hydrates in marine sediments: 1. conceptual model of gas hydrate growth conditioned by host sediment properties. J. Geophys. Res. 104(22), 985–23,003 (1999)

    Google Scholar 

  9. Daigle, H. and Dugan, B.: Capillary controls on methane hydrate distribution and fracturing in advective systems. Geochem. Geophys. Geosyst., 12(1), (2011)

  10. Davie, M.K., Buffett, B.A.: A numerical model for the formation of gas hydrate below the seafloor. J. Geophys. Res. Solid Earth. 106(B1), 497–514 (2001)

    Article  Google Scholar 

  11. Davie, M. K. and Buffett, B. A.: A steady state model for marine hydrate formation: Constraints on methane supply from pore water sulfate profiles. J. Geophys. Res. Solid Earth, 108(B10):n/a–n/a, (2003)

  12. Davie, M.K., Zatsepina, O.Y., Buffett, B.A.: Methane solubility in marine hydrate environments. Mar. Geol. 203(1–2), 177–184 (2004)

    Article  Google Scholar 

  13. Dickens, G.R.: Rethinking the global carbon cycle with a large, dynamic and microbially mediated gas hydrate capacitor. Earth Planet. Sci. Lett. 213, 169–183 (2003)

    Article  Google Scholar 

  14. Englezos, P., Kalogerakis, N., Dholabhai, P.D., Bishnoi, P.R.: Kinetics of formation of methane and ethane gas hydrates. Chem. Eng. Sci. 42(11), 2647–2658 (1987)

    Article  Google Scholar 

  15. Garg, S.K., Pritchett, J.W., Katch, A., Baba, K., Fijii, T.: A mathematical model for the formation and dossociation of methane hydrates in the marine environment. J. Geophys. Res. 113, B08201 (2008)

    Google Scholar 

  16. Gibson, Nathan L., Medina, F.P., Peszynska, M., Showalter, Ralph E., Evolution of phase transitions in methane hydrate. J. Math. Anal. Appl. 409(2), 816–833 (2014)

  17. Gupta, S., Helmig, R., Wohlmuth, B.: Non-isothermal, multi-phase, multi-component flows through deformable methane hydrate reservoirs. Comput. Geosci. 19(5), 1063–1088 (2015)

    Article  Google Scholar 

  18. Gupta, S., Wohlmuth, B., Helmig, R.: Multi-rate time stepping schemes for hydro-geomechanical model for subsurface methane hydrate reservoirs. Adv. Water Resour. 91(C), 78–87 (2016)

    Article  Google Scholar 

  19. Henry, P., Thomas, M., Clennell, M.B.: Formation of natural gas hydrates in marine sediments: 2. thermodynamic calculations of stability conditions in porous sediments. J. Geophys. Res. 104(23), 005–23,022 (1999)

    Google Scholar 

  20. Hong, W.-L. and Peszynska, M.: Geochemical aspects. In Daviel Broseta, Livio Ruffine, and Arnaud Desmedt, editors, Gas Hydrates 2: Geoscience Issues and Potential Industrial Applications, pages 219–241. Wiley, 2018. Numerical modeling of gas hydrate dynamics in nature marine sediments: case studies from hydrate ridge, Cascadia Margin and Ulleung Basin (2018)

  21. Hornung, U., Showalter, R.E.: Elliptic-parabolic equations with hysteresis boundary conditions. SIAM J. Math. Anal. 26(4), 775 (1995)

    Article  Google Scholar 

  22. Hunter, S.J., Goldobin, D.S., Haywood, A.M., Ridgwell, A., Rees, J.G.: Sensitivity of the global submarine hydrate inventory to scenarios of future climate change. Earth Planet. Sci. Lett. 367, 105–115 (2013)

    Article  Google Scholar 

  23. Islam, M.R.: A new recovery technique for gas production from Alaskan gas hydrates. J. Pet. Sci. Eng. 11(4), 267–281 (1994)

    Article  Google Scholar 

  24. Karlsen, K.H., Towers, J.D.: Convergence of the lax-friedrichs scheme and stability for conservation laws with a discontinuous space-time dependent flux. Chin. Ann. Math. 25(03), 287–318 (2004)

    Article  Google Scholar 

  25. Karlsen, K., Risebro, H., Towers, J.: L1 stability for entropy solutions of nonlinear degenerate parabolic convection-diffusion equations with discontinuous coefficients. Skr. K. Nor. Vidensk. Selsk. 01, 1–49 (2003)

    Google Scholar 

  26. Kim, H.C., Bishnoi, P.R., Heidemann, R.A., Rizvi, S.S.H.: Kinetics of methane hydrate decomposition. Chem. Eng. Sci. 42(7), 1645–1653 (1987)

    Article  Google Scholar 

  27. Kou, J., Sun, S.: A new treatment of capillarity to improve the stability of impes two-phase flow formulation. Comput. Fluids. 39(10), 1923–1931 (2010)

    Article  Google Scholar 

  28. Kruzhkov, S.N.: The Cauchy problem in the large for certain nonlinear first-order differential equations. Dok1. Akad. Nauk SSSR. 132, 36–39 (1960)

    Google Scholar 

  29. Kuznetsov, N.N.: Accuracy of some approximate methods for computing the weak solutions of a first-order quasi-linear equation. USSR Comput. Math. Math. Phys. 16(6), 105–119 (1976)

    Article  Google Scholar 

  30. Antonio C. Lasaga. Kinetic Theory in the Earth Sciences, Volume 402. Princeton university press, 2014

  31. LeVeque, Randall J. Numerical Methods for Conservation Laws. 2nd ed. Basel ; Boston: Birkhäuser Verlag, 1992. Print. Lectures in Mathematics ETH Zürich.

  32. Randall, J.: LeVeque. Finite Volume Methods for Hyperbolic Problems. Cambridge texts in applied mathematics. Cambridge University Press, Cambridge ; New York (2002)

    Google Scholar 

  33. Li, Y., Yang, M., Zhao, J., Liang, H., Song, Y., Ruan, X.: Numerical simulation of methane production from hydrates induced by different depressurizing approaches. Energies. 5(2), 438–458 (2012)

    Article  Google Scholar 

  34. Liu, X., Flemings, P.B.: Passing gas through the hydrate stability zone at southern hydrate ridge, offshore Oregon. EPSL. 241, 211–226 (2006)

    Article  Google Scholar 

  35. Liu, X., Flemings, P.B.: Dynamic multiphase flow model of hydrate formation in marine sediments. J. Geophys. Res. 112, B03101 (2008)

    Google Scholar 

  36. Liu, X., Flemings, P.B.: Capillary effects on hydrate stability in marine sediments. J. Geophys. Res. Solid Earth. 116(B7), 2011 (1978–2012)

    Google Scholar 

  37. Lin, L., Temple, B., Wang, J.: Suppression of oscillations in Godunovs method for a resonant non-strictly hyperbolic system. SIAM J. Numer. Anal. 32(3), 841–864 (1995)

    Article  Google Scholar 

  38. Maekawa, T., Itoh, S., Sakata, S., Igari, S.-I., Imai, N.: Pressure and temperature conditions for methane hydrate dissociation in sodium chloride solutions. Geochem. J. 29(5), 325–329 (1995)

    Article  Google Scholar 

  39. Malinverno, A., Kastner, M., Torres, M.E., Wortmann, U.G.: Gas hydrate occurence from pore water chlorinity and downhhole logs in a transect across the northern Cascadia margin integrated ocean drilling program expediction 311. J. Geophys. Res. 113, B08103 (2008)

    Google Scholar 

  40. Marín-Moreno, H., Giustiniani, M., Tinivella, U., Piñero, E.: The challenges of quantifying the carbon stored in arctic marine gas hydrate. Mar. Pet. Geol. 71, 76–82 (Mar 2016)

    Article  Google Scholar 

  41. Moncorgé, A., Tchelepi, H.A., Jenny, P.: Modified sequential fully implicit scheme for compositional flow simulation. Chin. J. Comput. Phys. 337, 98–115 (2017)

    Article  Google Scholar 

  42. Moridis, G.J., Collett, T.S., Dallimore, S.R., Satoh, T., Hancock, S., Weatherill, B.: Numerical studies of gas production from several CH − 4 hydrate zones at the Mallik site, Mackenzie Delta, Canada. J. Pet. Sci. Eng. 43(3–4), 219–238 (2004)

    Article  Google Scholar 

  43. George J Moridis and E. Dendy Sloan. Gas production potential of disperse low-saturation hydrate accumulations in oceanic sediments. Energy Convers. Manag., 48(6):1834–1849, 2007

  44. Nimblett, J., Ruppel, C.: Permeability evolution during the formation of gas hydrates in marine sediments. J. Geophys. Res. 108(B9), 2420 (2003)

    Google Scholar 

  45. Peszynska, M.: Never Heard of Methane Hydrate? That Might Be Good News. SIAM News, (2018)

  46. Peszynska, M., Jenkins, E., and Wheeler, M. F.: Boundary conditions for fully implicit two-phase flow model. In Xiaobing Feng and Tim P. Schulze, editors, Recent Advances in Numerical Methods for Partial Differential Equations and Applications, volume 306 of Contemporary Mathematics Series, pages 85–106. American Mathematical Society, (2002)

  47. Peszynska, M., Lu, Q., Wheeler, M.F.: Coupling different numerical algorithms for two phase fluid flow. In: Whiteman, I.J.R. (ed.) MAFELAP Proceedings of Mathematics of Finite Elements and Applications, pages 205–214. Brunel University, Uxbridge, U.K. (1999)

    Google Scholar 

  48. Peszynska, M., Showalter, R., Webster, J.: Advection of methane in the hydrate zone: model, analysis and examples. Math. Methods Appl. Sci. 38, 4613–4629 (2015)

    Article  Google Scholar 

  49. Peszynska, M., Hong, W.-L., Torres, M.E., Kim, J.-H.: Methane hydrate formation in Ulleung Basin under conditions of variable salinity: reduced model and experiments. Transp. Porous Media. 114, 1–27 (2016)

    Article  Google Scholar 

  50. Peszynska, M., Medina, F.P., Hong, W.-L., Torres, M.E.: Reduced numerical model for methane hydrate formation under conditions of variable salinity. time-stepping variants and sensitivity. Computation. 4(1), 1 (2015)

    Article  Google Scholar 

  51. Radu, F.A., Nordbotten, J.M., Pop, I.S., Kumar, K.: A robust linearization scheme for finite volume based discretizations for simulation of two-phase flow in porous media. J. Comput. Appl. Math. 289, 134–141 (2015)

    Article  Google Scholar 

  52. Rempel, A. W.: A model for the diffusive growth of hydrate saturation anomalies in layered sediments. J. Geophys. Res., 116(B10), (2011)

  53. Rempel, A.W., Buffett, B.A.: Formation and accumulation of gas hydrate in porous media. J. Geophys. Res. Solid Earth. 102(B5), 10151–10164 (1997)

    Article  Google Scholar 

  54. Ruppel, C.: Tapping methane hydrates for unconventional natural gas. Elements. 3(3), 193–199 (2007)

    Article  Google Scholar 

  55. Sabac, F.: The optimal convergence rate of monotone finite difference methods for hyperbolic conservation laws. SIAM J. Numer. Anal. 34(6), 2306–2318 (1997)

    Article  Google Scholar 

  56. Showalter, R.E.: Monotone Operators in Banach Space and Nonlinear Partial Differential Equations, volume 49 of Mathematical Surveys and Monographs. American Mathematical Society, Providence, RI (1997)

    Google Scholar 

  57. Sloan, E. D. and Koh, C. A.: Clathrate Hydrates of Natural Gases, volume 130. CRC Press, third edition, (2009)

  58. Smith, A.J., Flemings, P.B., Liu, X., Darnell, K.: The evolution of methane vents that pierce the hydrate stability zone in the world’s oceans. J. Geophys. Res. Solid Earth. 119(8), 6337–6356 (2014)

    Article  Google Scholar 

  59. Tang, T., Teng, Z.H.: The sharpness of Kuznetsov’s \( O\left(\sqrt{\Delta x}\right)\ {l}^1 \)-error estimate for monotone difference schemes. Math. Comput. 64(210), 581–589 (1995)

  60. Taylor, C.E., Link, D.D., English, N.: Methane hydrate research at NETL research to make methane production from hydrates a reality. JPSE. 56, 186–191 (2007)

    Article  Google Scholar 

  61. Tishchenko, P., Hensen, C., Wallmann, K., Wong, C.S.: Calculation of the stability and solubility of methane hydrate in seawater. Chem. Geol. 219(1–4), 37–52 (2005)

    Article  Google Scholar 

  62. Torres, M.E., Wallmann, K., Tréhu, A.M., Bohrmann, G., Borowski, W.S., Tomaru, H.: Gas hydrate growth, methane transport, and chloride enrichment at the southern summit of Hydrate Ridge, Cascadia margin off Oregon. Earth Planet. Sci. Lett. 226(1–2), 225–241 (2004)

    Article  Google Scholar 

  63. Towers, J.D.: Convergence of a difference scheme for conservation laws with a discontinuous flux. SIAM J. Numer. Anal. 38(2), 681–698 (2000)

    Article  Google Scholar 

  64. VanderBeek, B.P., Rempel, A.W.: On the importance of advective versus diffusive transport in controlling the distribution of methane hydrate in heterogeneous marine sediments. J. Geophys. Res. Solid Earth. 123(7), 5394–5411 (2018)

    Article  Google Scholar 

  65. Klaus, W., Riedel, M., Hong, W., Patton, H., Hubbard, A., Pape, T., Hsu, C., Schmidt, C., Johnson, J., Torres, M., Andreassen, K., Berndt, C., Bohrmann, G.: Gas hydrate dissociation off Svalbard induced by isostatic rebound rather than global warming. Nat. Commun. 9(1), 83–83 (2018)

    Article  Google Scholar 

  66. Walsh, M.R., Koh, C.A., Sloan, E.D., Sum, A.K., Wu, D.T.: Microsecond simulations of spontaneous methane hydrate nucleation and growth. Science (New York, N.Y.). 326(5956), 1095–1098 (2009)

    Article  Google Scholar 

  67. Wheeler, M.F., Peszynska, M.: Computational engineering and science methodologies for modeling and simulation of subsurface applications. Adv. Water Resour. 25(8–12), 1147–1173 (2002)

    Article  Google Scholar 

  68. White, M.D., Kneafsey, T.J., Seol, Y., Waite, W.F., Uchida, S., Lin, J.S., Myshakin, E.M., Gai, X., Gupta, S., Reagan, M.T., Queiruga, A.F., Kimoto, S., Baker, R.C., Boswell, R., Ciferno, J., Collett, T., Choi, J., Dai, S., de La Fuente, M., Fu, P., Fujii, T., Intihar, C.G., Jang, J., Ju, X., Kang, J., Kim, J.H., Kim, J.T., Kim, S.J., Koh, C., Konno, Y., Kumagai, K., Lee, J.Y., Lee, W.S., Lei, L., Liu, F., Luo, H., Moridis, G.J., Morris, J., Nole, M., Otsuki, S., Sanchez, M., Shang, S., Shin, C., Shin, H.S., Soga, K., Sun, X., Suzuki, S., Tenma, N., Xu, T., Yamamoto, K., Yoneda, J., Yonkofski, C.M., Yoon, H.C., You, K., Yuan, Y., Zerpa, L., Zyrianova, M.: An international code comparison study on coupled thermal, hydrologic and geomechanical processes of natural gas hydrate-bearing sediments. Mar. Pet. Geol. 120, 104566 (2020)

    Article  Google Scholar 

  69. Wilder, J.W., Moridis, G.J., Wilson, S.J., Kurihara, M., Masuda, Y., Anderson, B.J., Collett, T.S., Hunter, R.B., Narita, H., Pooladi-Darvish, M., Boswell, R.: An international effort to compare gas hydrate reservoir simulators. 28, 493–501 (2008)

  70. Xu, W.: Modeling dynamic marine gas hydrate systems. Am. Mineral. 89, 1271–1279 (2004)

    Article  Google Scholar 

  71. Xu, W., Ruppel, C.: Predicting the occurence, distribution, and evolution of methane hydrate in porous marine sediments. J. Geophys. Res. 104, 5081–5095 (1999)

    Article  Google Scholar 

  72. Yonkofski, C.M.R., Horner, J.A., White, M.D.: Experimental and numerical investigation of hydrate-guest molecule exchange kinetics. J. Nat. Gas Sci. Eng. 35, 1480–1489 (2016)

    Article  Google Scholar 

  73. You, K., Kneafsey, T.J., Flemings, P.B., Polito, P., Bryant, S.L.: Salinity-buffered methane hydrate formation and dissociation in gas-rich systems. J. Geophys. Res. Solid Earth. 120(2), 643–661 (2015)

    Article  Google Scholar 

  74. Yousif, M.H., Abass, H.H., Selim, M.S., Sloan, E.D.: Experimental and theoretical investigation of methane-gas-hydrate dissociation in porous media. SPE (Society of Petroleum Engineers) Reservoir Engineering; (United States). 6(1), 69–76 (1991)

    Google Scholar 

  75. Zhang, Y.: Geochemical Kinetics. Princeton University Press, Princeton, N.J (2008)

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank the anonymous referees whose comments inspired additional results included in the paper as well as helped to improve the exposition. We also thank our colleague Ralph Showalter who made us aware of the paper [21]. We are grateful to our geoscience collaborators Marta Torres and Wei-Li Hong for motivating discussions. Choah Shin would like to thank Larry Martin and Joyce O’Neill for the generous support with the endowed College of Science at Oregon State fellowship 2019-20. Malgorzata Peszynska would like to thank the NSF DMS IRD plan 2019-21 funding which partially made this research possible. This material is based upon work supported by and while serving at the National Science Foundation. Any opinion, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the National Science Foundation. This research was also partially supported by NSF DMS-1522734 “Phase transitions in porous media across multiple scales” and DMS-1912938 “Modeling with Constraints and Phase Transitions in Porous Media”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Malgorzata Peszynska.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This research was partially supported by NSF DMS-1522734 “Phase transitions in porous media across multiple scales” and DMS-1912938 “Modeling with Constraints and Phase Transitions in Porous Media”, NSF IRD plan 2019-20, and Martin-O'Neill COS Fellowship.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peszynska, M., Shin, C. Stability of a numerical scheme for methane transport in hydrate zone under equilibrium and non-equilibrium conditions. Comput Geosci 25, 1855–1886 (2021). https://doi.org/10.1007/s10596-021-10053-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10596-021-10053-2

Keywords

Navigation