Computational Geosciences

, Volume 20, Issue 3, pp 595–606 | Cite as

Hydrogenization of underground storage of natural gas

Impact of hydrogen on the hydrodynamic and bio-chemical behavior
  • B. Hagemann
  • M. Rasoulzadeh
  • M. Panfilov
  • L. Ganzer
  • V. Reitenbach
Open Access


The intermittent production of the renewable energy imposes the necessity to temporarily store it. Large amounts of exceeding electricity can be stored in geological strata in the form of hydrogen. The conversion of hydrogen to electricity and vice versa can be performed in electrolyzers and fuel elements by chemical methods. The nowadays technical solution accepted by the European industry consists of injecting small concentrations of hydrogen in the existing storages of natural gas. The progressive development of this technology will finally lead to the creation of underground storages of pure hydrogen. Due to the low viscosity and low density of hydrogen, it is expected that the problem of an unstable displacement, including viscous fingering and gravity overriding, will be more pronounced. Additionally, the injection of hydrogen in geological strata could encounter chemical reactivity induced by various species of microorganisms that consume hydrogen for their metabolism. One of the products of such reactions is methane, produced from Sabatier reaction between H2 and CO2. Other hydrogenotrophic reactions could be caused by acetogenic archaea, sulfate-reducing bacteria and iron-reducing bacteria. In the present paper, a mathematical model is presented which is capable to reflect the coupled hydrodynamic and bio-chemical processes in UHS. The model has been numerically implemented by using the open source code DuMuX developed by the University of Stuttgart. The obtained bio-chemical version of DuMuX was used to model the evolution of a hypothetical underground storage of hydrogen. We have revealed that the behavior of an underground hydrogen storage is different than that of a natural gas storage. Both, the hydrodynamic and the bio-chemical effects, contribute to the different characteristics.


Underground hydrogen storage Microbial population dynamics Numerical modeling Displacement instability Methanogenesis 


  1. 1.
    Allison, D.G.: Community Structure and Co-operation in Biofilms, vol. 59. Cambridge University Press (2000)Google Scholar
  2. 2.
    Bailey, J.E., Ollis, D.F.: Biochemical engineering fundamentals. Chemical Engineering Education (1976)Google Scholar
  3. 3.
    Bastian, P., Blatt, M., Dedner, A., Engwer, C., Klöfkorn, R., Ohlberger, M., Sander, O.: A generic grid interface for parallel and adaptive scientific computing. part i: abstract framework. Computing 82(2–3), 103–119 (2008)CrossRefGoogle Scholar
  4. 4.
    Brooks, R., Corey, T.: Hydraulic properties of porous media (1964)Google Scholar
  5. 5.
    Bulatov, G.: Underground storage of hydrogen. PhD thesis, Moscow Gubkin Oil and Gas University (in Russian) (1979)Google Scholar
  6. 6.
    Carden, P., Paterson, L.: Physical, chemical and energy aspects of underground hydrogen storage. Int. J. Hydrog. Energy 4(6), 559–569 (1979)CrossRefGoogle Scholar
  7. 7.
    Chen, Z.: Reservoir simulation: mathematical techniques in oil recovery, vol. 77. SIAM (2007)Google Scholar
  8. 8.
    Cord-Ruwisch, R., Seitz, H.J., Conrad, R.: The capacity of hydrogenotrophic anaerobic bacteria to compete for traces of hydrogen depends on the redox potential of the terminal electron acceptor. Arch. Microbiol. 149(4), 350–357 (1988)CrossRefGoogle Scholar
  9. 9.
    Crotogino, F., Donadei, S., Bünger, U., Landinger, H.: Large-scale hydrogen underground storage for securing future energy supplies. In: 18th World Hydrogen Energy Conference, pp 16–21 (2010)Google Scholar
  10. 10.
    Scheidegger, A.E.: The Physics of Flow Through Porous Media, Soil Science, vol. 86, p. 355. LWW (1958)Google Scholar
  11. 11.
    Dedner, A., Klöfkorn, R., Nolte, M.: The DUNE-ALUGrid module. arXiv:14076954(2014)
  12. 12.
    Dufrenne, J., Delfgou, E., Ritmeester, W., Notermans, S.: The effect of previous growth conditions on the lag phase time of some foodborne pathogenic micro-organisms. Int. J. Food Microbiol. 34(1), 89–94 (1997)CrossRefGoogle Scholar
  13. 13.
    DVGW: Arbeitsblatt G262: Nutzung von Gasen aus regenerativen Quellen in der öffentlichen Gasversorgung (2011)Google Scholar
  14. 14.
    Ebigbo, A., Golfier, F., Quintard, M.: A coupled, pore-scale model for methanogenic microbial activity in underground hydrogen storage. Adv. Water Resour. 61, 74–85 (2013)CrossRefGoogle Scholar
  15. 15.
    Flemisch, B., Darcis, M., Erbertseder, K., Faigle, B., Lauser, A., Mosthaf, K., Müthing, S., Nuske, P., Tatomir, A., Wolff, M., et al.: DuMu x: DUNE for multi-{phase, component, scale, physics, ...} flow and transport in porous media. Adv. Water Resour. 34 (9), 1102–1112 (2011)CrossRefGoogle Scholar
  16. 16.
    Foh, S.E.: Underground Hydrogen Storage: Final Report. Brookhaven National Laboratory, Department of Energy and Environment (1979)Google Scholar
  17. 17.
    Ganser, C., Eng, B.: New energy storage concept for renewable energies in the form of potential energy storage, p. 70. Techniken zur Energiewende (2013)Google Scholar
  18. 18.
    Ginn, T.R., Wood, B.D., Nelson, K.E., Scheibe, T.D., Murphy, E.M., Clement, T.P.: Processes in microbial transport in the natural subsurface. Adv. Water Resour. 25(8), 1017–1042 (2002)CrossRefGoogle Scholar
  19. 19.
    Golfier, F., Wood, B.D., Orgogozo, L., Quintard, M., Buès, M.: Biofilms in porous media: development of macroscopic transport equations via volume averaging with closure for local mass equilibrium conditions. Adv. Water Resour. 32(3), 463–485 (2009)CrossRefGoogle Scholar
  20. 20.
    Helmig, R., et al.: Multiphase flow and transport processes in the subsurface: a contribution to the modeling of hydrosystems. Springer (1997)Google Scholar
  21. 21.
    Kepplinger, J., Crotogino, F., Donadei, S., Wohlers, M.: Present trends in compressed air energy and hydrogen storage in germany. In: Solution Mining Research Institute SMRI Fall 2011 Conference, York, United Kingdom (2011)Google Scholar
  22. 22.
    Kleinitz, W., Boehling, E.: Underground gas storage in porous media–operating experience with bacteria on gas quality (spe94248) (2005)Google Scholar
  23. 23.
    Lovley, D.R., Phillips, E.J.: Competitive mechanisms for inhibition of sulfate reduction and methane production in the zone of ferric iron reduction in sediments. Appl. Environ. Microbiol. 53(11), 2636–2641 (1987)Google Scholar
  24. 24.
    Megee III, R., Drake, J., Fredrickson, A., Tsuchiya, H.: Studies in intermicrobial symbiosis. Saccharomyces cerevisiae and lactobacillus casei. Can. J. Microbiol. 18(11), 1733–1742 (1972)CrossRefGoogle Scholar
  25. 25.
    Monod, J.: The growth of bacterial cultures. Annu. Rev. Microbiol. 3(1), 371–394 (1949)CrossRefGoogle Scholar
  26. 26.
    Moser, A.: Bioprocess technology: kinetics and reactors. Springer (1988)Google Scholar
  27. 27.
    Müller-Syring, G., Henel, M., Krause, H., Rasmusson, H., Mlaker, H., Köppel, W., Höcher, T., Sterner, M., Trost, T.: Power-to-gas: Entwicklung von Anlagenkonzepten im Rahmen der DVGW-Innovationsoffensive, pp. 770–777. Artikel aus gwf-Gas/Erdgas November (2011)Google Scholar
  28. 28.
    Murphy, E.M., Ginn, T.R.: Modeling microbial processes in porous media. Hydrogeol. J. 8(1), 142–158 (2000)CrossRefGoogle Scholar
  29. 29.
    Panfilov, M.: Underground storage of hydrogen: in situ self-organisation and methane generation. Transp. Porous Media 85(3), 841–865 (2010)CrossRefGoogle Scholar
  30. 30.
    Paterson, L.: The implications of fingering in underground hydrogen storage. Int. J. Hydrog. Energy 8(1), 53–59 (1983)CrossRefGoogle Scholar
  31. 31.
    Poling, B.E., Prausnitz, J.M., John Paul, O., Reid, R.C.: The properties of gases and liquids, vol. 5. McGraw-Hill, New York (2001)Google Scholar
  32. 32.
    Roads2HyCom: Large Hydrogen Underground Storage (2008).
  33. 33.
    Šmigán, P., Greksak, M., Kozánková, J., Buzek, F., Onderka, V., Wolf, I.: Methanogenic bacteria as a key factor involved in changes of town gas stored in an underground reservoir. FEMS Microbiol. Lett. 73(3), 221–224 (1990)CrossRefGoogle Scholar
  34. 34.
    Toleukhanov, A., Panfilov, M., Panfilova, I., Kaltayev, A.: Bio-reactive two-phase transport and population dynamics in underground storage of hydrogen: Natural self-organisation. In: ECMOR XIII-13th European Conference on the Mathematics of Oil Recovery (2012)Google Scholar
  35. 35.
    Truche, L., Jodin-Caumon, M.C., Lerouge, C., Berger, G., Mosser-Ruck, R., Giffaut, E., Michau, N.: Sulphide mineral reactions in clay-rich rock induced by high hydrogen pressure. Application to disturbed or natural settings up to 250°C and 30bar. Chem. Geol. 351, 217–228 (2013)CrossRefGoogle Scholar
  36. 36.
    University of Stuttgart: DuMux Handbook (2013)Google Scholar

Copyright information

© The Author(s) 2015

Authors and Affiliations

  • B. Hagemann
    • 1
    • 2
  • M. Rasoulzadeh
    • 2
  • M. Panfilov
    • 2
  • L. Ganzer
    • 1
  • V. Reitenbach
    • 1
  1. 1.Clausthal University of TechnologyClausthal-ZellerfeldGermany
  2. 2.Laboratoire d’Energétique et de Mécanique Théorique et AppliquéeUniversité de Lorraine/CNRSVandœuvre-lès-NancyFrance

Personalised recommendations