Skip to main content
Log in

The regularizing Levenberg–Marquardt scheme for history matching of petroleum reservoirs

  • ORIGINAL PAPER
  • Published:
Computational Geosciences Aims and scope Submit manuscript

Abstract

In this paper, we study on a history matching approach that consists of finding stable approximations to the problem of minimizing the weighted least-squares functional that penalizes the misfit between the reservoir model predictions G(u) and noisy observations y η. In other words, we are interested in computing an approximation to the minimizer of \(\frac {1}{2}\vert \vert \Gamma ^{-1/2}(y^{\eta }-G(u))\vert \vert _{Y}^{2} \) where Γ is the measurements error covariance, Y is the observation space, and X is a set of admissible parameters. This is an ill-posed nonlinear inverse problem that we address by means of the regularizing Levenberg–Marquardt scheme developed by Hanke (Inverse Probl. 13:79–95, 1997; J. Integr. Equ. Appl. 22(2):259–283, 2010). Under certain conditions on G, the theory of Hanke (Inverse Probl. 13:79–95, 1997; J. Integr. Equ. Appl. 22(2):259–283, 2010) ensures the convergence of the scheme to stable approximations to the inverse problem. We propose an implementation of the regularizing Levenberg–Marquardt scheme that enforces prior knowledge on the geologic properties. In particular, the prior mean \(\overline {u}\) is incorporated in the initial guess of the algorithm, and the prior error covariance C is enforced through the definition of the parameter space X. Our main goal is to numerically show that the proposed implementation of the regularizing Levenberg–Marquardt scheme of Hanke is a robust method capable of providing accurate estimates of the geologic properties for small noise measurements. In addition, we provide numerical evidence of the convergence and regularizing results predicted by the theory of Hanke (Inverse Probl. 13:79–95, 1997; J. Integr. Equ. Appl. 22(2):259–283, 2010) for a prototypical oil–water reservoir model. The performance for recovering the true permeability with the regularizing Levenberg–Marquardt scheme is compared to the typical approach of computing the maximum a posteriori (MAP) estimator. In particular, we compare the proposed application of the regularizing Levenberg–Marquardt (LM) scheme against the standard LM approach of Li et al. (SPE J. 8(4):328–340, 2003) and Reynolds et al. (2008) for computing the MAP. Our numerical experiments suggest that the history matching approach based on iterative regularization is robust and could potentially be used to improve further on various methodologies already proposed as effective tools for history matching in petroleum reservoirs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abacioglu, Y., Oliver, D., Reynolds, A.: Efficient reservoir history matching using subspace vectors. Comput. Geosci. 5(2), 151–172 (2001)

    Article  Google Scholar 

  2. Chen, Z., Huan, G., MA, Y.: Computational methods for multiphase flows in porous media. In: Society for Industrial and Applied Mathematics, Philadelphia (2006)

  3. Colton, D., Kress, R.: Inverse Acoustic and Electromagnetic Scattering Theory. Springer, Berlin (1992)

    Book  Google Scholar 

  4. Deutsch, C.V.: Geostatistical Reservoir Modeling. Oxford University, Oxford (2002)

    Google Scholar 

  5. Engl, H.W., Flamm, C., Kgler, P., Lu, J., Mller, S., Schuster, P.: Inverse problems in systems biology. Inverse Probl. 25(12), 123014 (2009)

    Article  Google Scholar 

  6. Engl, H.W., Hanke, M., Neubauer, A.: Regularization of Inverse Problems, vol. 375. Springer, Dordrecht (1996)

    Book  Google Scholar 

  7. Groetsch, C.W.: The Theory of Tikhonov Regularization for Fredholm Equations of the First Kind. Pitman, Boston (1984)

    Google Scholar 

  8. Hanke, M.: A regularizing Levenberg-Marquardt scheme, with applications to inverse groundwater filtration problems. Inverse Probl. 13, 79–95 (1997)

    Article  Google Scholar 

  9. Hanke, M.: Regularizing properties of a truncated Newton-CG algorithm for nonlinear inverse problems. Numer. Funct. Anal. Optim. 18(9–10), 971–993 (1997)

    Article  Google Scholar 

  10. Hanke, M.: The regularizing Levenberg-Marquardt scheme is of optimal order. J. Integr. Equ. Appl. 22(2), 259–283 (2010)

    Article  Google Scholar 

  11. Iglesias, M.A., Dawson, C.: An iterative representer-based scheme for data inversion in reservoir modeling. Inverse Probl. 25, 035006 (2009)

    Article  Google Scholar 

  12. Iglesias, M.A., Law, K.J.H., Stuart, A.M.: Evaluation of Gaussian approximations for data assimilation in reservoir models. Comput. Geosci. (2013). doi:10.1007/s10596-013-9359-x

  13. Iglesias, M.A., McLaughlin, D.: Level-set techniques for facies identification in reservoir modeling. Inverse Probl. 27, 035008 (2011)

    Article  Google Scholar 

  14. Iglesias, M.A., McLaughlin, D.: Data inversion in coupled subsurface flow and geomechanics models. Inverse Probl. 28, 115009 (2012)

    Article  Google Scholar 

  15. Isakov, V.: On inverse problems in secondary oil recovery. Eur. J. Appl. Math. 19, 459–478 (2008)

    Google Scholar 

  16. Jensen, T.K., Hansen, P.C.: Iterative regularization with minimum-residual methods. BIT Numer. Math. 47(1), 103–120 (2007)

    Article  Google Scholar 

  17. Katltenbacher, B., Neubauer, A., Scherzer, O.: Iterative regularization methods for nonlinear ill-posed problems.Radon Series on Computational and Applied Mathematics, 1st edn.Walter de Gruyter, Berlin (2008)

    Google Scholar 

  18. Kravaris, C., Seinfeld, J.H.: Identification of parameters in distributed parameter systems by regularization. SIAM J. Control. Optim. 23(2), 217–241 (1985)

    Article  Google Scholar 

  19. Li, R., Reynolds, A.C., Oliver, D.S.: History matching of three-phase flow production data. SPE J. 8(4), 328–340 (2003)

    Google Scholar 

  20. Nagy, J.G., Palmer, K.M.: Steepest descent, CG, and iterative regularization of ill-posed problems. BIT Numer. Math. 43, 1003–1017 (2003)

    Article  Google Scholar 

  21. Nocedal, J.A., Wright, S.J.: Numerical Optimization: With 85 Illustrations. Springer Series in Operations Research Series. Springer, New York (1999)

  22. Reynolds, A.C., Oliver, D.S., Liu, N.: Inverse Theory for Petroleum Reservoir Characterization and History Matching, 1st edn. Cambridge University, Cambridge. ISBN: 9780521881517 (2008)

  23. Oliver, D., Chen, Y.: Recent progress on reservoir history matching: A review. Comput. Geosci. 15, 185–221 (2011). doi:10.1007/s10596-010-9194-2

    Article  Google Scholar 

  24. Tavakoli, R., Reynolds, A.C.: History matching with parametrization based on the SVD of a dimensionless sensitivity matrix. SPE J. 15(2), 495–508 (2010)

    Google Scholar 

  25. Tavakoli, R., Reynolds, A.: Monte Carlo simulation of permeability fields and reservoir performance predictions with SVD parameterization in RML compared with EnKF. Comput. Geosci. 15, 99–116 (2011). doi:10.1007/s10596-010-9200-8

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco A. Iglesias.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Iglesias, M.A., Dawson, C. The regularizing Levenberg–Marquardt scheme for history matching of petroleum reservoirs. Comput Geosci 17, 1033–1053 (2013). https://doi.org/10.1007/s10596-013-9373-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10596-013-9373-z

Keywords

Navigation