Skip to main content
Log in

A sequential partly iterative approach for multicomponent reactive transport with CORE2D

  • Original paper
  • Published:
Computational Geosciences Aims and scope Submit manuscript

Abstract

CORE2D V4 is a finite element code for modeling partly or fully saturated water flow, heat transport, and multicomponent reactive solute transport under both local chemical equilibrium and kinetic conditions. It can handle coupled microbial processes and geochemical reactions such as acid–base, aqueous complexation, redox, mineral dissolution/precipitation, gas dissolution/exsolution, ion exchange, sorption via linear and nonlinear isotherms, and sorption via surface complexation. Hydraulic parameters may change due to mineral precipitation/dissolution reactions. Coupled transport and chemical equations are solved by using sequential iterative approaches. A sequential partly iterative approach (SPIA) is presented which improves the accuracy of the traditional sequential non-iterative approach (SNIA) and is more efficient than the general sequential iterative approach (SIA). While SNIA leads to a substantial saving of computing time, it introduces numerical errors which are especially large for cation exchange reactions. SPIA improves the efficiency of SIA because the iteration between transport and chemical equations is only performed in nodes with a large mass transfer between solid and liquid phases. The efficiency and accuracy of SPIA are compared to those of SIA and SNIA using synthetic examples and a case study of reactive transport through the Llobregat Delta aquitard in Spain. SPIA is found to be as accurate as SIA while requiring significantly less CPU time. In addition, SPIA is much more accurate than SNIA with only a minor increase in computing time. A further enhancement of the efficiency of SPIA is achieved by improving the efficiency of the Newton–Raphson method used for solving chemical equations. Such an improvement is obtained by working with increments of log concentrations and ignoring the terms of the Jacobian matrix containing derivatives of activity coefficients. A proof is given for the symmetry and non-singularity of the Jacobian matrix. Numerical analyses performed with synthetic examples confirm that these modifications improve the efficiency and convergence of the iterative algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Appelo, C.A.J., Postma, D.: Geochemistry, Groundwater and Pollution. Balkema, Rotterdam (1993)

    Google Scholar 

  2. Appelo, C.A.J.: Cation and proton exchange, pH variations and carbonate reactions in a freshening aquifer. Water Resour. Res. 30(10), 2793–2805 (1994)

    Article  Google Scholar 

  3. Atkinson, K.: An Introduction to Numerical Analysis. Wiley, New Jersey, 573 pp (1989)

    MATH  Google Scholar 

  4. Ayora, C., Taberner, C., Saaltink, M.W., Carrera, J.: The genesis of dedolomites: a discussion based on reactive transport modeling. J. Hydrol. 209, 346–365 (1998)

    Article  Google Scholar 

  5. Cederberg, G.A., Street, R., Leckie, J.O.: A groundwater mass transport and equilibrium chemistry model for multicomponent systems. Water Resour. Res. 21(8), 1095–1104 (1985)

    Article  Google Scholar 

  6. Chilakapati, A., Yabusaki, S., Szecsody, J., MacEvoy, W.: Groundwater flow, multicomponent transport and biogeochemistry: development and application of a coupled process model. J. Contam. Hydrol. 43(3–4), 303–325 (2000)

    Article  Google Scholar 

  7. Dai, Z., Samper, J.: Inverse problem of multicomponent reactive chemical transport in porous media: formulation and applications. Water Resour. Res. 40, W07407 (2004). doi:10.1029/2004WR003248

    Article  Google Scholar 

  8. Dai, Z., Samper, J.: Inverse modeling of water flow and multicomponent reactive transport in coastal aquifer systems. J. Hydrol. 327, 447–461 (2006). doi:10.1016/j.jhydrol.2005.11.052

    Article  Google Scholar 

  9. Dai, Z., Samper, J., Ritzi, R.: Identifying geochemical processes by inverse modeling of multicomponent reactive transport in Aquia aquifer. Geosphere 4(4), 210–219 (2006)

    Article  Google Scholar 

  10. Engesgaard, P.: Model for Biological Clogging in 3D, Brief User’s Manual and Guide. Department of Hydrodynamics and Water Resources, Danish Technology University (2000)

    Google Scholar 

  11. Galíndez, J.M., Molinero, J., Samper, J., Yang, C.B.: Simulating concrete degradation processes by reactive transport models. J. Phys. IV France 136, 177–188 (2006)

    Article  Google Scholar 

  12. Garboczi, E.J., Bentz, D.P.: Computer simulation of the diffusivity of cement-based materials. J. Mater. Sci. 27, 2083–2092 (1992)

    Article  Google Scholar 

  13. Ginn, T.R., Murphy, E.M., Chilakapati, A., Seeboonruang, U.: Stochastic-convective transport with nonlinear reaction and mixing: application to intermediate-scale experiments in aerobic biodegradation in saturated porous media. J. Contam. Hydrol. 48(1–2), 121–149 (2001)

    Article  Google Scholar 

  14. Herzer, J., Kinzelbach, W.: Coupling of transport and chemical processes in numerical transport models. Geoderma 44, 115–127 (1989)

    Article  Google Scholar 

  15. Horn, R., Johnson, Ch.: Matrix Analysis. Cambridge University Press, Cambridge (1985)

    MATH  Google Scholar 

  16. Iribar, V., Carrera, J., Custodio, E., Medina, A.: Inverse modelling of seawater intrusion in the Llobregat delta deep aquifer. J. Hydrol. 198(1–4), 226-244 (1997)

    Article  Google Scholar 

  17. Kaluarachchi, J.J., Parker, J.C.: Modeling multicomponent organic chemical transport in three-fluid-phase porous media. J. Contam. Hydrol. 5(4), 349–374 (1990)

    Article  Google Scholar 

  18. Kirkner, D.J., Jennings, A.A.,Theis, T.L.: Multisolute mass transport with chemical interaction kinetics. J. Hydrol. 76(1–2), 107–117 (1985)

    Article  Google Scholar 

  19. Lensing, H.J., Vogt, M., Herrling, B.: Modeling of biologically mediated redox processes in the subsurface. J. Hydrol. 159(1–4), 125–143 (1994)

    Article  Google Scholar 

  20. Lichtner, P.C.: Continuum formulation of multicomponent-multiphase reactive transport. In: Lichtner, P.C., Steefel, C.I., Oelkers, E.H. (Eds.) Reviews in Mineralogy. Reactive Transport in Porous Media. Mineralogical Society of America, Washington, DC. (1996)

  21. Liu, C.W., Narasimhan, T.N.: Redox-controlled multiple species reactive chemical transport, 2. Verification and application. Water Resour. Res. 25, 883–910 (1989)

    Article  Google Scholar 

  22. Maher, K., Steefel, C.I., DePaolo, D.J., Viani, B.E.: The mineral dissolution rate conundrum: Insights from reactive transport modeling of U isotopes and pore fluid chemistry in marine sediments. Geochim. Cosmochim. Acta 70(2), 337–363 (2006)

    Article  Google Scholar 

  23. Manzano, M.: Génesis del agua intersticial del acuitardo del delta del Llobregat: origen de los solutos y transporte interactivo con el medio sólido, Ph.D. Dissertation, Universidad Politécnica de Cataluña, Barcelona, Spain. (in Spanish). (1993)

  24. Molinero, J., Samper, J.: Modeling of reactive solute transport in fracture zones of granitic bedrocks. J. Contam. Hydrol. 82, 293–318 (2006)

    Article  Google Scholar 

  25. Molinero, J., Samper, J., Zhang, G., Yang, C.: Biogeochemical reactive transport model of the redox zone experiment of the Äspö hard rock laboratory in Sweden. Nucl. Technol. 148, 151–165 (2004)

    Google Scholar 

  26. Nienhuis, P., Appelo, C.A.T., Willemsen, A.: Program PHREEQM: modified from PHREEQM for use in mixing cell flow tube (1991)

  27. Pruess, K., Garcia, J., Kovscek, T., Oldenburg, C., Rutqvist, J., Steefel, C., Xu, T.: Code intercomparison builds confidence in numerical simulation models for geologic disposal of CO2. Energy 29(9–10), 1431–1444 (2004)

    Article  Google Scholar 

  28. Regnier, P., O’Kane, J.P., Steefel, C.I.,Vanderborght, J.P.: Modeling complex multi-component reactive-transport systems: towards a simulation environment based on the concept of a knowledge base. Appl. Math. Model. 26(9), 913–927 (2002)

    Article  MATH  Google Scholar 

  29. Richardson, I.G.: The nature of C-S-H in hardened cements. Cem. Concr. Res. 29, 1131–1147 (1999)

    Article  Google Scholar 

  30. Saaltink, M.W., Ayora, C., Stuyfzand, P.J.,Timmer, H.: Analysis of a deep well recharge experiment by calibrating a reactive transport model with field data. J. Contam. Hydrol. 65(1–2), 1–18 (2003)

    Article  Google Scholar 

  31. Saaltink, M.W., Carrera, J., Ayora, C.: A comparison of two approaches for reactive transport modelling. J. Geochem. Explor. 69–70, 97–101 (2000)

    Article  Google Scholar 

  32. Salvage, K.M.,Yeh, G.-T.: Development and application of a numerical model of kinetic and equilibrium microbiological and geochemical reactions (BIOKEMOD). J. Hydrol. 209(1–4), 27–52 (1998)

    Article  Google Scholar 

  33. Samper, J., Juncosa, R., Delgado, J., Montenegro, L.: CORE2D: a code for non-isothermal water flow and reactive solute transport. Users manual version 2. ENRESA Technical Publication 06/2000: 131 pp (2000)

  34. Samper, J., Yang, C., Montenegro, L.: CORE2D version 4: a code for non-isothermal water flow and reactive solute transport. Users Manual. University of La Coruña, Spain (2003)

    Google Scholar 

  35. Samper, J., Yang, C.: Stochastic analysis of transport and multicomponent competitive monovalent cation exchange in aquifers. Geosphere 2, 102–112 (2006)

    Article  Google Scholar 

  36. Samper, J., Zhang, G., Montenegro, L.: Coupled microbial and geochemical reactive transport models in porous media: formulation and application to synthetic and in situ experiments. J. Iberian Geol. 32(2), 215–231 (2006)

    Google Scholar 

  37. Samper, J., Yang, C., Naves, A., Yllera, A., Hernández, A., Molinero, J., Soler, J.M., Hernán, P., Mayor, J.C., Astudillo, J.: A fully 3-D anisotropic model of DI-B in situ diffusion experiment in the Opalinus clay formation. Phys. Chem. Earth 31, 531–540 (2006)

    Google Scholar 

  38. Samper, J., Yang, C.: An approximate analytical solution for multicomponent cation exchange reactive transport in groundwater. Trans. Porous Media 69, 67–88 (2007)

    Article  Google Scholar 

  39. Samper, J., Zheng, L., Fernández, A.M., Montenegro, L.: Inverse modeling of multicomponent reactive transport through single and dual porosity media. J. Contam. Hydrol. 98(3–4), 115–127 (2008)

    Article  Google Scholar 

  40. Samper, J., Zheng, L., Montenegro, L.: Inverse hydrochemical models of aqueous extract experiments. Phys. Chem. Earth 33(12–13), 1009–1018 (2008). doi:10.1016/j.pce.2008.05.012

    Google Scholar 

  41. Samper, J., Zheng, L., Montenegro, L., Fernández, A.M., Rivas, P.: Testing coupled thermo-hydro-chemical models of compacted bentonite after dismantling the FEBEX in situ test. Appl. Geochem. 23(5), 1186–1201 (2008). doi:10.1016/j.apgeochem.2007.11.010

    Article  Google Scholar 

  42. Simunek, J., Suarez, D.: Two-dimensional transport model for variably saturated porous media withmajor ion chemistry. Water Resour. Res. 30(4), 1115–1133 (1994)

    Article  Google Scholar 

  43. Steefel, C.I.: 1DREACT, One Dimensional Reaction-Transport Model. User Manual and Programmer’s Guide. Pacific Northwest Laboratories, Batelle, Washington (1993)

    Google Scholar 

  44. Steefel, C.I., DePaolo, D.J., Lichtner, P.C.: Reactive transport modeling: an essential tool and a new research approach for the Earth sciences. Earth Planet. Sci. Lett. 240(3–4), 539–558 (2005)

    Article  Google Scholar 

  45. Steefel, C.I., Lichtner, P.C.: Diffusion and reaction in rock matrix bordering a hyperalkaline fluid-filled fracture. Geochim. Cosmochim. Acta 58(17), 3595–3612 (1994)

    Article  Google Scholar 

  46. Steefel, C.I., Lasaga, A.C.: A coupled model for transport of multiple chemical species and kinetic precipitation/dissolution reactions with applications to reactive flow in single phase hydrothermal system. Am. J. Sci. 294, 529–592 (1994)

    Google Scholar 

  47. Steefel, C.I., MacQuarrie, K.T.B. Approaches to modelling of reactive transport in porous media. In: Reactive Transport in Porous Media. Rev. Mineral. 34, 83–129 (1996) (Mineralogical Society of America)

    Google Scholar 

  48. Steefel, C.I., Lichtner, P.C.: Multicomponent reactive transport in discrete fractures: II: infiltration of hyperalkaline groundwater at Maqarin, Jordan, a natural analogue site. J. Hydrol. 209(1–4), 200–224 (1998)

    Article  Google Scholar 

  49. Steefel, C.I., Van Cappellen, P.: A new kinetic approach to modeling water–rock interaction: the role of nucleation, precursors, and Ostwald ripening. Geochim. Cosmochim. Acta 54(10), 2657–2677 (1990)

    Article  Google Scholar 

  50. Stumm, W., Morgan, J.J.: Aquatic Chemistry: An Introduction Emphasizing Chemical Equilibria in Natural Waters. Wiley, New York (1981)

    Google Scholar 

  51. Tebes-Stevens, C.J., Valocchi, A., VanBriesen, J.M., Rittmann, B.E.: Multicomponent transport with coupled geochemical and microbiological reactions: model description and example simulations. J. Hydrol. 209(1–4), 8–26 (1998)

    Article  Google Scholar 

  52. Valocchi, A.J., Malmstead, M.: A note on the accuracy of operator splitting for advection-dispersion-reaction problems. Water Resour. Res. 28(5), 1471–1476 (1992)

    Article  Google Scholar 

  53. Xu, T.: Modeling non-isothermal multicomponent reactive solute transport through variably saturated porous media. Ph.D. Dissertation, University of La Coruña, La Coruña, Spain (1996)

  54. Xu, T., Samper, J., Ayora, C., Manzano, M., Custodio, E.: Modeling of non-isothermal multicomponent reactive transport in field scale porous media flow systems. J. Hydrol. 214, 144–164 (1999)

    Article  Google Scholar 

  55. Xu, T., White, S.P., Pruess, K., Brimhall, G.H.: Modeling of pyrite oxidation in saturated and unsaturated subsurface flow systems. Trans. Porous Media 39(1), 25–56 (2000)

    Article  Google Scholar 

  56. Walter, A.L., Frind, E.O., Blowes, D.W., Ptacek, C.J., Molson, J.W.: Modeling of multicomponent reactive transport in groundwater, 1. Model development and evaluation. Water Resour. Res. 30(11), 3137–3148 (1994)

    Article  Google Scholar 

  57. Wolery, T.J.: EQ3NR, A computer program for geochemical aqueous speciation-solubility calculations (version 7.0), Lawrence Livermore Laboratory (1992)

  58. Yabusaki, S.B., Steefel, C.I., Wood, B.D.: Multidimensional, multicomponent, subsurface reactive transport in nonuniform velocity fields: code verification using an advective reactive streamtube approach. J. Contam. Hydrol. 30(3–4), 299–331 (1998)

    Article  Google Scholar 

  59. Yang, C.: Conceptual and numerical coupled thermal-hydro-bio-geochemical models for three-dimensional porous and fractured media. PhD thesis, University of La Coruña, La Coruña, Spain (2006)

  60. Yang, C., Samper, J., Molinero, J., Bonilla, M.: Modelling geochemical and microbial consumption of dissolved oxygen after backfilling a high level radiactive waste repository. J. Contam. Hydrol. 93, 130–148 (2007)

    Article  Google Scholar 

  61. Yang, C., Samper, J., Montenegro, L.: A coupled non-isothermal reactive transport model for long-term geochemical evolution of a HLW repository in clay. Environ. Geol. 53, 1627–1638 (2008)

    Article  Google Scholar 

  62. Yang, C., Samper, J., Molinero, J.: Inverse microbial and geochemical reactive transport models in porous media. Phys. Chem. Earth 33(12–13), 1026–1034 (2008). doi:10.1016/j.pce.2008.05.016

    Google Scholar 

  63. Yang, C., Samper, J.: A subgrid scale stabilized finite element method to multicomponent reactive transport in porous media. Trans. Porous Media (2008). doi:10.1007/s11242-008-9288-7

  64. Yeh, G.T., Tripathi, V.S.: A critical evaluation of recent developments of hydrogeochemical transport models of reactive multichemical components. Water Resour. Res. 25(1), 93–108 (1989)

    Article  Google Scholar 

  65. Yeh, G.T., Tripathi, V.S.: A model for simulating transport of reactive multispecies components: model development and demonstration. Water Resour. Res. 27(12), 3075–3094 (1991)

    Article  Google Scholar 

  66. Yeh, G.T.: Computational Subsurface Hydrology, Reactions, Transport and Fate of Chemicals and Microbes. Kluwer, The Netherlands (2000)

    Google Scholar 

  67. Zhang, G.: Nonisothermal hydrobiogeochemical models in porous media. PhD dissertation, University of A Coruña, La Coruña, Spain (2001)

  68. Zhang, G., Samper, J., Montenegro, L.: Coupled thermo-hydro-bio-geochemical reactive transport model of the CERBERUS heating and radiation experiment in Boom clay. Appl. Geochem. 23, 932–949 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Javier Samper.

Additional information

Changbing Yang is now at The University of Texas at Austin, USA.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Samper, J., Xu, T. & Yang, C. A sequential partly iterative approach for multicomponent reactive transport with CORE2D . Comput Geosci 13, 301–316 (2009). https://doi.org/10.1007/s10596-008-9119-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10596-008-9119-5

Keywords

Navigation