Skip to main content
Log in

Computer simulation of the diffusivity of cement-based materials

  • Papers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

A digital image-based model of the microstructure of cement paste, coupled with exact transport algorithms, is used to study the diffusivity of Portland cement paste. The principal variables considered are water∶cement ratio, degree of cement hydration and capillary porosity. Computational methods are described and diffusivity results are presented, which are found to agree with the available experimental measurements within experimental error. Model cement pastes prepared with different water∶cement ratios, and having different degrees of hydration, are found to have diffusivities that lie on a single master curve when plotted as a function of capillary porosity. Concepts from percolation theory are used to explain quantitatively the dependence of diffusivity on capillary porosity. The effect of silica fume addition on diffusivity is also examined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. M. Schwartz andJ. R. Banavar,Phys. Rev. B,39 (1989) 11965.

    Google Scholar 

  2. V. K. S. Shante andS. Kirkpatrick,Adv. Phys. 20, (1971) 325.

    Google Scholar 

  3. A. Atkinson andA. K. Nickerson,J. Mater. Sci. 19 (1984) 3069.

    Google Scholar 

  4. A. H. Thompson, A. J. Katz andC. E. Krohn,Adv. Phys. 36 (1987) 625.

    Google Scholar 

  5. J. Pommersheim andJ. R. Clifton,Mater. Const. 18 (1985) 21.

    Google Scholar 

  6. W. C. Hanson in “The Chemistry of Sulphate-Resisting Portland Cements”, edited by E. G. Swanson (University of Toronto Press, Toronto, 1968).

    Google Scholar 

  7. A. Atkinson,Nucl. Chem. Mgt 5 (1985) 203.

    Google Scholar 

  8. D. P. Bentz, D. B. Gingold, E. J. Garboczi, C. J. Lobb andH. M. Jennings,Ceram. Trans. 16 (1991) 211.

    Google Scholar 

  9. E. J. Garboczi andD. P. Bentz in “Materials Science of Concrete” Vol. II, edited by J. Skalny (American Ceramic Society, Westville, 1991) in press.

    Google Scholar 

  10. K. L. Scrivener in “Materials Science of Concrete” Vol. I, edited by J. Skalny (American Ceramic Society, Westville, 1989) p. 127.

    Google Scholar 

  11. S. Mindess andJ. F. Young, “Concrete” (Prentice-Hall Englewood Cliffs, New Jersey, 1981) Ch. 4.

    Google Scholar 

  12. E. M. Gartner andJ. M. Gaidis in “Materials Science of Concrete” Vol. I, edited by J. Skalny (American Ceramic Society, Westerville, 1989) p. 95.

    Google Scholar 

  13. D. P. Bentz andE. J. Garboczi,Cement Concrete Res:21 (1991) 325.

    Google Scholar 

  14. J. F. Young andW. Hansen in “Microstructural Development During Hydration of Cement”, edited by L. J. Struble and P. W. Brown (Materials Research Society, Pittsburgh, 1987) p. 313.

    Google Scholar 

  15. P. Meakin, in “Phase Transitions and Critical Phenomena” Vol. 12, edited by C. Domb and J. L. Leibowitz (Academic, New York, 1988).

    Google Scholar 

  16. M. Eden, in Proceedings of the Fourth Berkeley Symposium on Mathematical Statistics and Probability, Vol. IV, edited by Jerzy Neyman (University of California Press, Berkeley, 1961).

    Google Scholar 

  17. E. J. Garboczi andD. P. Bentz,J. Mater. Res. 6 (1991) 196.

    Google Scholar 

  18. D. Stauffer, “Introduction to Percolation Theory” (Taylor & Francis, London, 1985) Ch. 1.

    Google Scholar 

  19. H. Scher andR. Zallen,J. Chem. Phys. 53 (197) 3759.

  20. R. Zallen, “The Physics of Amorphous Solids” (Wiley, New York, 1983) Ch. 4.

    Google Scholar 

  21. C. L. Page, N. R. Short andA. El Tarras,Cement Concrete Res. 11 (1981) 395.

    Google Scholar 

  22. R. Fogelholm,J. Phys. C13, (1980) L571.

    Google Scholar 

  23. D. B. Gingold andC. J. Lobb,Phys. Rev. B 42 (1990) 8220.

    Google Scholar 

  24. W. H. Press, B. P. Flannery, S. A. Teukolsky andW. T. Vetterling, “Numerical Recipes: The Art of Scientific Computing” (Cambridge University Press, Cambridge, 1986) Ch. 10.

    Google Scholar 

  25. O. Gautefall,American Concrete Institute Special Publication 91-48.

  26. J. H. Talpin,Aust. J. Appl. Sci. 10 (1959) 329.

    Google Scholar 

  27. L. Roberts, in “Materials Science of Concrete” Vol. I, edited by J. Skalny (American Ceramic Society, Westerville, 1989) p. 197.

    Google Scholar 

  28. D. P. Bentz andE. J. Garboczi,Amer. Conc. Inst. Mater. J. (Sept/Oct. 1991).

  29. S. A. Rodger andG. W. Groves,Adv. Cement Res. 1 (1988) 84.

    Google Scholar 

  30. Z. Q. Wu andJ. F. Young,J. Mater. Sci. 19 (1984) 3477.

    Google Scholar 

  31. C. M. Dobson, D. G. C. Goberdhan, J. D. F. Ramsay andS. A. Rodger,ibid. 23 (1988) 4108.

    Google Scholar 

  32. M. A. Dubson andJ. C. Garland,Phys. Rev. B 32 (1985) 7621.

    Google Scholar 

  33. P. Sen, C. Scala andM. H. Cohen,Geophys. 46 (1981) 781.

    Google Scholar 

  34. D. S. McLachlan, M. Blaszkiewicz andR. E. Newnham,J. Am. Ceram. Soc. 73 (1990) 2187.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Garboczi, E.J., Bentz, D.P. Computer simulation of the diffusivity of cement-based materials. J Mater Sci 27, 2083–2092 (1992). https://doi.org/10.1007/BF01117921

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01117921

Keywords

Navigation