Skip to main content

Advertisement

Log in

A distinct element simulation including surface tension – towards the modeling of gas hydrate behavior

  • Original Paper
  • Published:
Computational Geosciences Aims and scope Submit manuscript

Abstract

Gas hydrate bearing sediments are an integral part of the world’s continental margins. Several tsunamigenetic continental slope failure events have been triggered by gas hydrates, but their mechanical behavior is poorly understood. In this work, we propose a method to simulate a surface tensed medium such as gas hydrate in soil, using distinct element method (DEM). For implementation in sediment pore size, we scaled up attractive particle interactions governing surface tension on molecular level. Several virtual experiments are used to benchmark the proposed method. A simulation of gas hydrate growth in sediment with differing grain sizes demonstrates the potential of the new approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sloan, E.D.: Clathrate Hydrates of Natural Gases. Marcel Dekker, Inc., New York, Basel (1998)

    Google Scholar 

  2. Mienert, J., Posewang, J., Baumann, M.: Gas hydrates along the northeastern Atlantic Margin; possible hydrate-bound margin instabilities and possible release of methane. In: Henriet, J.P., Mienert, J. (eds.) Gas Hydrates; Relevance to World Margin Stability and Climate Change, pp. 275–291. Geological Society of London, London, UK (1998)

    Google Scholar 

  3. Bondevik, S., Harbitz, C.B., Dawson, A., Dawson, S., Løvholt, F., Mangerud, J., Svendsen, J.I.: The Storegga Slide tsunami along the Norwegian coast – from the geological record to numerical simulations. http://www.ibg.uit.no/~stein/abstarct02fig_NPF2002.htm. Cited 12. Mar. 2003 (2002)

  4. Bondevik, S., Svendsen, J.I., Johnsen, G., Mangerud, J., Kaland, P.E.: The Storrega tsunami along the Norwegian coast, its age and runup. Boreas 26, 29–53 (1997)

    Article  Google Scholar 

  5. McIver, R.D.: Role of naturally occurring gas hydrates in sediment transport. AAPG Bull. 66, 789–792 (1982)

    Google Scholar 

  6. Winters, W.J., Booth, J.S., Mason, D.H., Commeau, R.F., Dillon, W.P.: Laboratory testing of gas hydrates in marine sediment. American Geophysical Union Spring Meeting, Baltimore, April (1995)

  7. Westbrook, G.K., Long, C., Peacock, S., Haacke, R., Reston, T., Zillmer, M., Flueh, E., Foucher, J.-P., Nouzé, H., Contrucci, I., Klingelhoefer, F., Best, A.I., Priest, J.A., Camerlenghi, A., Carcione, J., Rossi, G., Madrussani, G., Gei, D., Mienert, J., Vanneste, M., Buenz, S., Hetland, S., Larsen, R., Habetinova, E., Minshull, T.A., Chand, S., Clayton, C.R.I., Dean, S.: Techniques for the Quantification of Methane Hydrate in European Continental Margins – HYDRATECH – Final Report. (2004)

  8. Beauchamp, B.: Natural gas hydrates: myths, facts and issues. C. R. Geosci. 336, 751–765 (2004)

    Article  Google Scholar 

  9. Kennett, J.P., Cannariato, K.G., Hendy, I.L., Behl, R.J.: Methane hydrates in quaternary climate change: the clathrate gun hypothesis. AGU, Washington (2003)

    Google Scholar 

  10. Gunn, D.A., Nelder, L.M., Rochelle, C.A., Bateman, K., Jackson, P.D., Lovell, M.A., Hobbs, P.R.N., Long, D., Rees, J.G., Schultheiss, P., Roberts, J., Francis, T.: Towards improved ground models for slope instability evaluations through better characterization of sediment-hosted gas-hydrates. Terra Nova 14, 443–450 (2002)

    Article  Google Scholar 

  11. Feeser, V.: Gashydratbildung in Tiefseesedimenten-Zur Rolle der sedimentmechanischen Prozess-Steuereung. DGMK-Tag.Ber. 9706, 51–60 (1997)

    Google Scholar 

  12. Henry, P., Michel, T., Clennell, M.B.: Formation of natural gas hydrates in marine sediments 2. Thermodynamic calculations of stability conditions in porous sediments. J. Geophys. Res. 104(B10), 23005–23022 (1999)

    Article  Google Scholar 

  13. Clennell, M.B., Hovland, M., Booth, J.S., Henry, P., Winters, W.J.: Formation of natural gas hydrates in marine sediments 1. Conceptual model of gas hydrate growth conditioned by host sediment properties. J. Geophys. Res. 104(B10), 22985–23003 (1999)

    Article  Google Scholar 

  14. Booth, J.S., Winters, W.J., Dillon, W.P., Clennell, M.B., Rowe, M.M.: Major occurrences and reservoir concepts of marine clathrate hydrates: implications and field evidence. In: Henriet, J.P., Mienert, J. (eds.) Gas Hydrates; Relevance to World Margin Stability and Climate Change, pp. 275–291. Geological Society of London, London, UK (1998)

    Google Scholar 

  15. Brewer, P.G., Orr, F.M., Friederich, G., Kvenvolden, K.A., Orange, D.L., McFarlane, J., Kirkwood, W.: Deep ocean field tests of methane hydrate formation from a remotely operated vehicle. Geology 25, 407–410 (1997)

    Article  Google Scholar 

  16. Egeberg, P.K., Dickens, G.R.: Themodynamic and pore water halogen constraints on gas hydrate distribution at ODP Site 997 (Blake Ridge). Chem. Geol. 153, 53–79 (1999)

    Article  Google Scholar 

  17. Spangenberg, E., Kulenkampff, J., Naumann, R., Erzinger, J.: Pore space hydrate formation in a glass bead sample from methane dissolved water. Geophys. Res. Lett. 32(L24301), 1–4 (2005)

    Google Scholar 

  18. Spangenberg, E.: Modeling of the influence of gas hydrate content on the electrical properties of porous sediments. J. Geophys. Res. 106(B4), 6535–6548 (2001)

    Article  Google Scholar 

  19. Tohidi, B., Anderson, R., Clennell, M.B., Burgass, R.W., Biderkab, A.B.: Visual observation of gas-hydrate formation and dissociation in synthetic porous media by means of glass micromodels. Geology (Boulder) 29(9), 867–870 (2001)

    Article  Google Scholar 

  20. Sills, G.C., Wheeler, S.J., Thomas, S.D., Gardener, T.N.: Behaviour of offshore soils containing gas bubbles. Géotechnique 41(2), 227–241 (1991)

    Google Scholar 

  21. van Genuchten, M.T.: A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci. Soc. Am. J. 44, 892–898 (1980)

    Article  Google Scholar 

  22. Cundall, P.A., Strack, O.D.L.: A discrete numerical model for granular assemblies. Géotechnique 29, 47–65 (1979)

    Article  Google Scholar 

  23. Murariu, V., Svoboda, J., Sergeant, P.: The modeling of the separation process in a ferrohydrostatic separator using discrete element method. In: Shimizu, Y., Hart, R., Cundall, P.A. (eds.) Numerical Modeling in Micromechanics via Particle Methods – 2004, pp. 119–126. Balkema Publishers, Leiden (2004)

    Google Scholar 

  24. Kawamoto, H.: Introduction of research and development on electromechanics of electromagnetic particles for imaging technology. In: Shimizu, Y., Hart, R., Cundall, P.A. (eds.) Numerical Modeling in Micromechanics via Particle Methods – 2004, pp. 95–101. Balkema Publishers, Leiden (2004)

    Google Scholar 

  25. Yao, M., Anandarajah, A.: Three-dimensional discrete element method of analysis of clays. J. Eng. Mech. 129(6), 585–596 (2003)

    Article  Google Scholar 

  26. Gröger, T., Tüzün, U., Heyes, D.M.: Shearing of wet particle systems – discrete element simulation. In: Konietzky, H. (ed.) Numerical Modeling in Micromechanics via Particle Methods, pp. 65–72. Balkema Publishers, Leiden (2003)

    Google Scholar 

  27. I. Itasca Consulting Group: PFC2D Particle Flow Code in 2 Dimensions (Version 3.0 Manual). ICG, Minneapolis (2002)

  28. Kreiter, S., Feeser, V., Grupe, B.: Numerical simulation of gas hydrate behavior in marine sediments using PFC2D. In: Shimizu, Y., Hart, R., Cundall, P.A. (eds.) Numerical Modeling in Micromechanics via Particle Methods – 2004, pp. 191–197. Balkema Publishers, Leiden (2004)

    Google Scholar 

  29. du Noüy, L.P.: A new apparatus for measuring surface tension. J. Gen. Physiol. 1, 521–524 (1919)

    Article  Google Scholar 

  30. Israelachvili, J.N.: Intermolecular and Surface Forces. Academic Press, London (1991)

    Google Scholar 

  31. Kreiter, S., Feeser, V.: Mechanics of growing gas hydrates in marine sediments – numerical simulation of sediment–hydrate interaction. 14. Tagung für Ingenieurgeologie, Kiel, Germany, 26–29.3 (2003)

  32. Allen, M.P., Tildesley, D.J.: Computer Simulation of Liquids. Oxford University Press, (1987)

  33. Uchida, T., Ebinuma, T., Ishizaki, T.: Dissociation condition measurements of methane hydrate in confined small pores of porous glass. J. Phys. Chem. B 103, 3659–3662 (1999)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Kreiter.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kreiter, S., Feeser, V., Kreiter, M. et al. A distinct element simulation including surface tension – towards the modeling of gas hydrate behavior. Comput Geosci 11, 117–129 (2007). https://doi.org/10.1007/s10596-006-9034-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10596-006-9034-6

Keywords

Navigation