Skip to main content

Theoretical Analysis of Gas Hydrate Dissociation in Sediment

  • Conference paper
  • First Online:
Proceedings of GeoShanghai 2018 International Conference: Rock Mechanics and Rock Engineering (GSIC 2018)

Included in the following conference series:

  • 2008 Accesses

Abstract

Theoretical analysis was carried out to investigate the dissociation of gas hydrate in stiff sediment. First the mathematical model for gas hydrate dissociation was decoupled by asymptotic expansion method considering the order differences of time scales among seepage, dissociation of gas hydrate and heat conduction. The multi-scale perturbation method was used to solve the problem. It is shown that seepage is the fastest process. The heat conduction is the slowest process. With the pressure decreases at the boundary, pressure changes first while no hydrate dissociation and heat conduction occur. Gradually, dissociation causes the decrease of temperature. After a long time, heat can conduct to cause the increase of temperature. Otherwise, the decreased temperature will cause the stop of dissociation if no heat is supplied in time.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Jin, Z.H., Johnson, S.E., Cook, A.E.: Crack extension induced by dissociation of fracture-hosted methane gas hydrate. Geophys. Res. Lett. 42(20), 8522–8529 (2015)

    Article  Google Scholar 

  2. Lu, X.B., Wang, L., Wang, S.Y., Li, Q.P.: Instability of seabed and pipes induced by NGH dissociation. In: Proceedings of the Nineteenth International Offshore and Polar Engineering Conference, Beijing, pp. 110–114 (2010)

    Google Scholar 

  3. Makogon, Y.F.: Hydrates of Hydrocarbons. Penn Well, Tulsa (1997)

    Google Scholar 

  4. Englezos, P.: Reviews: clathrate hydrates. Ind. Eng. Chem. 32, 1251–1274 (1993)

    Article  Google Scholar 

  5. Sloan, E.D.: Clathrate hydrates of natural gases. Marcel Dekker, New York (1998)

    Google Scholar 

  6. Selim, M.S., Sloan, E.D.: Heat and mass transfer during the dissociation of hydrates in porous media. AIChE J. 35, 1049–1052 (1989)

    Article  Google Scholar 

  7. Tsypkin, G.: Mathematical models of gas hydrates dissociation in porous media. In: Holder, G.D., Bishnoi, P.R. (eds.) New York Academy of Sciences, New York, pp. 428–436 (2000)

    Article  Google Scholar 

  8. Lu, X.B., Wang, S., Zhang, X., Li, Q.P., Yao, H.Y.: A mathematical model for dissociation of gas hydrate. In: Proceedings of the Nineteenth International Offshore and Polar Engineering Conference, Osaka, Japan (2009)

    Google Scholar 

  9. Moridis, G., Apps, J., Pruess, K., Myer, L.: EOSHYDR: a TOUGH2 module for ch4 – hydrate release and flow in the subsurface. Lawrence Berkeley National Laboratory, Berkeley, CA, LBNL-42386 (1998)

    Google Scholar 

  10. Swinkels, W.J.A.M., Drenth, R.J.J.: Thermal reservoir simulation model of production from naturally occurring gas hydrate accumulations. In: SPE 56550, Annual Technical Conference, Houston, TX October, pp. 465–477 (1999)

    Google Scholar 

  11. Zhang, X.H., Lu, X.B., Li, Q.P.: Thermally induced evolution of phase transformations in gas hydrate sediment. Sci. China Phys. Mech. Astron. 53(8), 1530–1535 (2010)

    Article  Google Scholar 

  12. Ji, C., Ahmadi, G., Smith, D.H.: Natural gas production from hydrate decomposition by depressurization. Chem. Eng. Sci. 56, 5801–5814 (2001)

    Article  Google Scholar 

  13. Hillman, J.I.T., Cook, A.E., Daigle, H., Nole, M., Malinverno, A., Meazell, K., Flemings, P.B.: Gas hydrate reservoirs and gas migration mechanisms in the Terrebonne Basin, Gulf of Mexico. Mar. Pet. Geol. 2017(86), 1357–1373 (2017)

    Article  Google Scholar 

  14. You, K.H., Flemings, P.B.: Methane hydrate formation in in thick sand reservoirs: 1. Short-range diffusion. Mar. Pet. Geol. 89, 428–442 (2018)

    Article  Google Scholar 

  15. Yan, K.X.: Advanced Mechanics of Fluids in Porous Media, University of Science and Technology of China Press, Beijing (1999)

    Google Scholar 

  16. Liu, L.L., Lu, X.B., Zhang, X.H.: A theoretical model for predicting the spatial distribution of gas hydrate dissociation under the combination of depressurization and heating without the discontinuous interface assumption. J. Pet. Sci. Eng. 133, 589–601 (2015)

    Article  Google Scholar 

Download references

Acknowledgement

This project is supported by the Open Research Fund of Shanghai Key Laboratory of Mechanics in Energy Engineering and China natural Science Fund (No.11272314 and No.51239010).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to X. B. Lu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lu, X.B., Lu, L., Zhang, X.H., Wang, S.Y. (2018). Theoretical Analysis of Gas Hydrate Dissociation in Sediment. In: Zhang, L., Goncalves da Silva, B., Zhao, C. (eds) Proceedings of GeoShanghai 2018 International Conference: Rock Mechanics and Rock Engineering. GSIC 2018. Springer, Singapore. https://doi.org/10.1007/978-981-13-0113-1_13

Download citation

Publish with us

Policies and ethics