Skip to main content
Log in

JHomogenizer: a computational tool for upscaling permeability for flow in heterogeneous porous media

  • Published:
Computational Geosciences Aims and scope Submit manuscript

Abstract

This paper presents an object-oriented programming approach for the design of numerical homogenization programs, called JHomogenizer. It currently includes five functional modules to compute effective permeability and simple codes for computing solutions for flow in porous media. Examples with graphical output are shown to illustrate some functionalities of the program. A series of numerical examples demonstrates the effectiveness of the methodology for two-phase flow in heterogeneous reservoirs. The software is freely available, and the open architecture of the program facilitates further development and can adapt to suit specific needs easily and quickly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Amaziane, B.: Global behavior of compressible three-phase flow in heterogeneous porous media. Transp. Porous Media 10, 43–56 (1993)

    Article  Google Scholar 

  2. Amaziane, B., Bourgeat, A., Koebbe, J.: Numerical simulation and homogenization of two-phase flow in heterogeneous porous media. Transp. Porous Media 6, 519–547 (1991)

    Article  Google Scholar 

  3. Amaziane, B., Hontans, T., Koebbe, J.: Equivalent permeability and simulation of two-phase flow in heterogeneous porous media. Comput. Geosci. 5, 279–300 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  4. Arbogast, T., Douglas, J., Hornung, U.: Derivation of the double porosity model of single phase flow via homogenization theory. SIAM J. Math. Anal. 21, 823–826 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  5. Arbogast, T.: Computational aspects of dual-porosity models. In: Hornung, U. (ed.) Homogenization and Porous Media, pp. 203–223. Springer, Berlin Heidelberg New York (1997)

    Google Scholar 

  6. Badea, A., Bourgeat, A.: Homogenization of two phase flow through randomly heterogeneous porous media. In: Bourgeat, A. et al. (eds.) Proceedings of the Conference Mathematical Modelling of Flow Through Porous Media, pp. 44–58. World Scientific, Singapore (1995)

    Google Scholar 

  7. Badea, A., Bourgeat, A.: Numerical simulations by homogenization of two-phase flow through randomly heterogeneous porous media. In: Helmig, R. et al. (eds.) Notes on Numerical Fluid Mechanics, Modeling and Computation in Environmental Sciences , vol. 59, pp. 13–24 (1997)

  8. Bakhvalov, N., Panasenko, G.: Homogenisation: Averaging Processes in Periodic Media Kluwer Academic Publishers, Dordrecht (1989)

    MATH  Google Scholar 

  9. Balls, D.: Numerical methods and simulation applied to optimize heating designs, Master’s Thesis, Utah State University, Logan, Utah (2004)

  10. Bear, J., Bachmat, Y.: Introduction to Modeling of Transport Phenomena in Porous Media. Kluwer Academic Publishers, London (1991)

    MATH  Google Scholar 

  11. Bensoussan, A., Lions, J.L., Papanicolaou, G.: Asymptotic Analysis for Periodic Structures. North-Holland, Amsterdam (1978)

    MATH  Google Scholar 

  12. Bourgeat, A.: Two-phase flow. In: Hornung, U. (ed.) Homogenization and Porous Media, pp. 95–128. Springer, Berlin Heidelberg New York (1997)

    Google Scholar 

  13. Bourgeat, A., Hidani, A.: Effective model of two-phase flow in a porous medium made of different rock types. Appl. Anal. 58, 1–29 (1995)

    MathSciNet  MATH  Google Scholar 

  14. Bourgeat, A., Kozlov, S.M., Mikelic, A.: Effective equations of two-phase flow in random media. Calc. Var. 3, 385–406 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  15. Bourgeat, A., Jurak, M., Piatnitski, A.: Averaging a transport equation with small diffusion and oscillating velocity. Math. Methods Appl. Sci. 26, 95–117 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  16. Bourgeat, A., Piatnitski, A.: Approximation of effective coefficients in stochastic homogenization, Ann. Inst. Henri Poincaré B 40, 153–165 (2004)

    MathSciNet  MATH  Google Scholar 

  17. Brezzi, F., Fortin, M.: Mixed and Hybrid Finite Element Methods. Springer, Berlin Heidelberg New York (1991)

    MATH  Google Scholar 

  18. Ciarlet, P.G.: The Finite Element Method for Elliptic Problems. North-Holland, Amsterdam (1978)

  19. Cioranescu, D., Donato, P.: An Introduction to Homogenization. Oxford University Press, Oxford (1999)

    MATH  Google Scholar 

  20. Farmer, C.L.: Upscaling: A review. Int. J. Numer. Meth. Fluids 40, 63–78 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  21. Hornung, U.: Homogenization and Porous Media. Interdisciplinary Applied Mathematics. Springer, Berlin Heidelberg New York (1997)

    Google Scholar 

  22. Jikov, V.V., Kozlov, S.M., Oleinik, O.A.: Homogenization of Differential Operators and Integral Functionals. Springer, Berlin Heidelberg New York (1994)

    Google Scholar 

  23. Koebbe, J.: A computationally efficient modification of mixed finite element methods for flows problems with full transmissivity tensors. Numer. Methods Partial Differ. Equ. 9, 339–355 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  24. Koebbe, J.: Homogenization-wavelet reconstruction methods for elliptic problems. Numer. Methods Partial Differ. Equ. 100, 1–35 (2002)

    Google Scholar 

  25. Koebbe, J.: Computational Homogenization and Multiscale Research Web Site. (2004) Available online at http://www.math.usu.edu/~koebbe/wwwHomog/

  26. Koebbe, J.: JHomogenizer User’s Guide. (2004) Available at http://www.math.usu.edu/~koebbe/wwwHomog/

  27. Koebbe, J., Thomas, R.: Wavelet construction based on homogenization. In: Proceedings of the XIII International Conference on Computational Methods in Water Resources, Calgary, Alberta, Canada 25–29 June 2000

  28. Koebbe, J., Watkins, L., Thomas, R.: Characterization and upscaling of sedimentary depositional formations using archetypal analysis and homogenization. In: Proceedings of the Third International IMACS, Jackson, Wyoming, USA, 9–12 July 1997

  29. Panfilov, M.: Macroscale Models for Flow Through Highly Heterogeneous Porous Media. Kluwer Academic, Dordrecht (2000)

    Google Scholar 

  30. Renard, P., DeMarsily, G.: Calculating equivalent permeability: A review. Adv. Water Resour. 20, 253–278 (1997)

    Article  Google Scholar 

  31. Roberts, J.E., Thomas, J.M.: Mixed and hybrid methods. In: Ciarlet, P.G., Lions, J.L. (eds.) Handbook of Numerical Analysis, Finite Element Methods (Part 1), Vol. II, pp. 524–639, North-Holland, Amsterdam (1991)

  32. Sanchez-Palencia, E.: Non-Homogeneous Media and Vibration Theory. Springer, Berlin Heidelberg New York (1980)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brahim Amaziane.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Amaziane, B., Koebbe, J. JHomogenizer: a computational tool for upscaling permeability for flow in heterogeneous porous media. Comput Geosci 10, 343–359 (2006). https://doi.org/10.1007/s10596-006-9028-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10596-006-9028-4

Keywords

Mathematics Subject Classifications (2000)

Navigation