Skip to main content
Log in

Synthesis and halogenation of 2-methylimidazo[1,2-a]pyridine. Antimicrobial activity of 3-bromo-2-methyl-1Н-imidazo[1,2-a]pyridinium bromide

  • Published:
Chemistry of Heterocyclic Compounds Aims and scope

Imidazo[1,2-a]pyridine derivatives have been shown to possess a broad range of biological activity. 2-Amino-1-propargylpyridinium and 2-amino-1-(2-bromoallyl)pyridinium bromides, the structures of which were established on the basis of X-ray structural analysis, reacted with sodium methoxide, leading to the formation of 2-methylimidazo[1,2-a]pyridine. 2-Methylimidazo[1,2-a]pyridine further reacted with bromine and iodine, providing 3-halo-2-methyl-1H-imidazo[1,2-a]pyridinium trihalides, the structure of which was confirmed by X-ray structural analysis. 3-Halo-2-methyl-1H-imidazo[1,2-a]pyridinium halides were obtained from the respective trihalides. 3-Bromo- 2-methyl-1H-imidazo[1,2-a]pyridinium bromide showed antimicrobial properties against Staphylococcus aureus at the concentrations of 2700 and 675 μg/ml.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Marinescu, M. Int. J. Pharma Bio Sci. 2017, 8, 338.

  2. Suloeva, E.; Yure, M.; Gudriniece, E. Chem. Heterocycl. Compd. 1999, 10, 1121.

    Article  Google Scholar 

  3. Bakherad, M.; Nasr-Isfahani, H.; Keivanloo, A.; Doostmohammadi, N. Tetrahedron Lett. 2008, 49, 3819.

    Article  CAS  Google Scholar 

  4. Adib, M.; Mahdavi, M.; Noghania, M. A.; Mirzaeib, P. Tetrahedron Lett. 2007, 48, 7263.

    Article  CAS  Google Scholar 

  5. Feng, M.-L.; Li, S.-Q.; He, H.-Z.; Xi, L.-Y; Chen, S.-Y; Yu, X.-Q. Green Chem. 2019, 21, 1619.

  6. Chapman, M. R.; Kwan, M. H. T.; King, G. E.; Kyffin, B. A.; Blacker, A. J.; Willans, C. E.; Nguyen, B. N. Green Chem. 2016, 18, 4623.

    Article  CAS  Google Scholar 

  7. Li, Y.; Qi, S.; Xia, C.; Xu, Y.; Duan, G.; Ge, Y. Anal. Chim. Acta 2019, 1077, 243.

    Article  CAS  Google Scholar 

  8. Srivastava, S.; Thakur, N.; Singh, A.; Shukla, P.; Maikhuri, V. K.; Garg, N.; Prasad, A.; Pandey, R. RSC Adv. 2019, 9, 29856.

    Article  CAS  Google Scholar 

  9. Li, J.; Tang, J.; Wu, Y.; He, Q.; Yu, Y. RSC Adv. 2018, 8, 5058.

    Article  CAS  Google Scholar 

  10. Jiang, H.; Guo, D.; Zhang, Y.; Shen, Q.-P.; Tang, S.; You, J.; Huo, Y.; Wang, H.; Gui, Q.-W. Synthesis 2020, 2713.

  11. Patnaik, S.; Marugan, J. J.; Liu, K.; Zheng, W.; Southall, N.; Dehdashti, S. J.; Thorsell, A.; Heilig, M.; Bell, L.; Zook, M.; Eskay, B.; Brimacombe, K. R.; Austin, C. P. J. Med. Chem. 2013, 56, 9045.

    Article  CAS  Google Scholar 

  12. Lee, J. H.; Jung, H. I.; Kim, D. Y. Synth. Commun. 2020, 50, 197.

    Article  CAS  Google Scholar 

  13. Melvin, J. R.; Lawrence, S.; Graupe, M.; Venkataramani, C. US Patent 2009005374.

  14. Lu, G.; Huchler, G.; Krueger, T.; Pangerl, M.; Santagostino, M.; Desrosiers, J.-N. WO Patent 2017198734A1.

  15. Park, J. W.; Kim, Y. H.; Kim, D. Y. Synth. Commun. 2020, 50, 710.

    Article  CAS  Google Scholar 

  16. Ge, W.; Zhu, X.; Wei Y. Eur. J. Org. Chem. 2013, 6015.

  17. García-Carrillo, M. A.; Guzmán, Á.; Díaz, E. Tetrahedron Lett. 2017, 58, 1952.

    Google Scholar 

  18. Loevenich, J.; Losen, J.; Dierichs, A. Chem. Ber. 1927, 60, 950.

    Article  Google Scholar 

  19. Kalita, E. V.; Kim, D. G.; Rakhmatullina, D. A.; Pylneva, M. A.; Krynina, E. M. Russ. J. Gen. Chem. 2019, 89, 1570.

    Article  CAS  Google Scholar 

  20. Mantina, M.; Chamberlin, A. C.; Valero, R.; Cramer, C. J.; Truhlar, D. G. J. Phys. Chem. 2009, 113, 5806.

    Article  CAS  Google Scholar 

  21. Moldovan, C.; Oniga, O.; Meda, R.; Tiperciuc, B.; Verite, P.; Pîrnău, A.; Crişan, O.; Bojiţă, M. Farmacia 2011, 59, 659.

    CAS  Google Scholar 

  22. Pesnot, T.; Gershater, M. C.; Edwards, M.; Ward, J. M.; Hailes, H. C. Molecules 2017, 22, 626.

    Article  Google Scholar 

  23. Klichenko, N. S. Vestn. Ross. Voyen.-Med. Akad. 2018, 37, 299.

    Google Scholar 

  24. Kuzmenkov, A. Yu. Vestn. Smolen. Gos. Med. Akad. 2017, 16, 84.

    Google Scholar 

  25. Shlepotina, N. M.; Kolesnikov, O. L.; Shikova, Yu. S.; Peshikova, M. V.; Kolbina, E. V.; Kameneva, A. S.; Kalita, E. V.; Kim, D. G.; Krinina, E. M. Probl. Med. Mikol. 2021, 23, 164.

    Google Scholar 

  26. Shlepotina, N. M.; Kolesnikov, O. L.; Shikova, Yu. S.; Galagudin, I. V.; Kalita, E. V.; Tkacheva, A. R.; Kim, D. G. Ross. Immunol. Zhurn. 2019, 13, 1313.

    Google Scholar 

  27. SMART and SAINT-Plus. Version 5.0. Data Collection and Processing Software for the SMART System; Bruker AXS Inc.: Madison, 1998.

  28. SHELXTL/PC. Version 5.10. An Integrated System for Solving, Refining and Displaying Crystal Structures From Diffraction Data; Bruker AXS Inc.: Madison, 1998.

  29. Dolomanov, O. V.; Bourhis, L. J.; Gildea, R. J.; Howard, J. A. K.; Puschmann H. J. Appl. Crystallogr. 2009, 42, 339.

    Article  CAS  Google Scholar 

  30. http://www.biometrica.tomsk.ru/programm_stat.htm.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elena V. Kalita.

Additional information

Translated from Khimiya Geterotsiklicheskikh Soedinenii, 2022, 58(4/5), 227–234

Supplementary Information

ESM 1

(PDF 725 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kalita, E.V., Kim, D.G., Krynina, E.M. et al. Synthesis and halogenation of 2-methylimidazo[1,2-a]pyridine. Antimicrobial activity of 3-bromo-2-methyl-1Н-imidazo[1,2-a]pyridinium bromide. Chem Heterocycl Comp 58, 227–234 (2022). https://doi.org/10.1007/s10593-022-03076-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10593-022-03076-9

Keywords

Navigation