Skip to main content
Log in

Synthesis of Allyl- and Propenyl-Substituted 1,3-Benzoxazines and Their Antimicrobial Activity

  • SEARCH FOR NEW DRUGS
  • Published:
Pharmaceutical Chemistry Journal Aims and scope

New 1,3-benzoxazine derivatives were obtained via Mannich reactions of 2-allyl- and 2-propenylphenol, formaldehyde, and primary amines (benzylamine and 4-bromoaniline) and then converted into the corresponding quaternary ammonium salts through interaction with HBr. The structures of the synthesized compounds were confirmed by PMR, 13C NMR, and IR spectroscopy. The antimicrobial activity of the synthesized compounds against Staphylococcus aureus, Escherichia coli, Candida albicans, Shigella flexneri, Salmonella enterica, and Aspergillus niger was studied at concentrations of 20, 30, and 50 mg/L. The quaternary salts, especially the compound with an N-benzyl fragment in its structure that manifested bactericidal and fungicidal activity, exhibited the best antimicrobial properties. The synthesized benzoxazinium salts are proposed for further research as bactericidal and fungicidal substances.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.

Similar content being viewed by others

References

  1. K. Nicolau, Isr. J. Chem., 58, 104 – 113 (2018).

    Article  Google Scholar 

  2. K. Nicolau, D. Vourloumis, N. Winssinger, et al., Angew. Chem., Int. Ed., 39, 44 – 122 (2000).

    Article  Google Scholar 

  3. G. M. Mehdiyeva, M. R. Bairamov, Sh. B. Hosseinzadeh, et al., Turk. J. Chem., 44, 670 – 686 (2020).

    Article  Google Scholar 

  4. A. M. Magerramov, M. R. Bairamov, G. M. Mekhtieva, et al., Neftekhimiya, 48(1), 63 – 66 (2008).

    Google Scholar 

  5. M. R. Bairamov, A. M. Magerramov, G. M. Mekhtieva, et al., Neftekhimiya, 50(1), 69 – 75 (2010).

    CAS  Google Scholar 

  6. A. M. Maharramov, M. R. Bayramov, V. M. Abbasov, et al., Processes Petrochem. Oil Refin., 10(1) (37), 16 – 19 (2009).

    Google Scholar 

  7. K. M. Naidu, R. N. Gajanan, and K. V. Gowri Chandra Sekhar, Arabian J. Chem., 12, 2418 – 2429 (2019).

  8. M. M. Ghorab, A. M. Soliman, M. S. Alsaid, et al., Arabian J. Chem., 13, 545 – 556 (2020).

    Article  CAS  Google Scholar 

  9. A. Arendt-Pindel, A. Marzatek-Harich, E. Gebarowska, et al., New J. Chem., 43, 1204 – 1205 (2019).

    Article  Google Scholar 

  10. Sh. Rastegarnia, M. Pordel, and S. Allameh, Arabian J. Chem., 13, 3903 – 3909 (2020).

    Article  CAS  Google Scholar 

  11. A. Mymoona, H. Shaikh, M. H. Syed, et al., MCRE, 20, 1147 – 1153 (2010).

    Google Scholar 

  12. W. J. Burke, J. Am. Chem. Soc., 71, 609 – 612 (1949).

    Article  CAS  Google Scholar 

  13. W. J. Burke, J. L. Bishop, E. L. M. Glennie, et al., J. Org. Chem., 30, 3423 – 3427 (1965).

    Article  CAS  Google Scholar 

  14. Z. Hao, S. Lv, Sh. Song, et al., J. Therm. Anal. Calorim., 119, 1439 – 1444 (2015).

    Article  CAS  Google Scholar 

  15. D. F. Pei, Y. Gu, and X. X. Cai, Acta Polym. Sin., 595 – 598 (1998).

  16. T. Agag and T. Takeichi, Macromolecules, 36, 6010 – 6017 (2003).

    Article  CAS  Google Scholar 

  17. T. Takeichi, K. Nakamura, T. Agag, et al., Des. Monomers Polym., 7, 727 – 740 (2004).

    Article  CAS  Google Scholar 

  18. H. J. Kim, Z. Brunovska, and H. Ishida, Polymer, 40, 6565 – 6573 (1999).

    Article  CAS  Google Scholar 

  19. T. Zhang, L. Bonnaud, J. Raquez, et al., Polymers, 12, 415 – 425 (2020).

  20. A. Rucigaj, B. Alic, M. Krajnc, et al., Polymer Lett., 9(7), 647 – 657 (2015).

    Article  CAS  Google Scholar 

  21. B. S. Rao and A. Palanisamy, Eur. Polym. J., 49(8), 2365 – 2376 (2013).

    Article  CAS  Google Scholar 

  22. L. Yanfang, L. Chunyan, H. Zhanzhan, et al., React. Funct. Polym., 75, 9 – 15 (2014).

    Article  Google Scholar 

  23. E. Gilbert, M. E. Taverna, M. F. Dieser, et al., J. Polym. Res., 25, 114 (2018).

    Article  Google Scholar 

  24. S. Haixiao and L. Zhiguo, J. Therm. Anal. Calorim., 114, 1207 – 1215 (2013).

    Article  Google Scholar 

  25. K. Ramachandran, Sh. Pratibha, M. Ahilan, et al., J. Therm. Anal. Calorim., 142, 1233 – 1242 (2020).

    Article  Google Scholar 

  26. A. Andre, Sch. Oliver, S. Leobener, et al., J. Polym. Sci., Part A: Polym. Chem., 52(12), 1693 – 1699 (2014).

  27. Y. Zhu, J. Su, R. Lin, and P. Li, Macromol. Res., 28, 472 – 479 (2020).

    Article  CAS  Google Scholar 

  28. Z. Hao, S. Lv, Sh. Song, et al., J. Therm. Anal. Calorim., 119, 1439 – 1444 (2015).

    Article  CAS  Google Scholar 

  29. L. X. Juan, X. Zhong, and Z. Chang-lu, Chin. J. Polym. Sci., 34, 919 – 932 (2016).

    Article  Google Scholar 

  30. M. Arslan, Turk. J. Chem., 43, 1472 – 1485 (2019).

    Article  CAS  Google Scholar 

  31. A. Rucigaj, B. Alic, M. Krajnc, et al., Polymer Lett., 9, No. 7, 647 – 657 (2015).

    Article  CAS  Google Scholar 

  32. K. Martina, L. Rotolo, A. Porcheddu, et al., Chem. Commun., 54, 551 – 554 (2018).

    Article  CAS  Google Scholar 

  33. H. S. El-Sayed, R. Chizolla, A. A. Ramadan, et al., Food Chem., 221, 196 – 204 (2017).

    Article  CAS  Google Scholar 

  34. P. Avato, F. Tursi, C. Vitali, V. Miccolis, et al., Phytomedicine, 7(3), 239 – 243 (2000).

    Article  CAS  Google Scholar 

  35. Methodical Instructions MUK 4.2.1890 – 04. Determination of sensitivity of microorganisms to antibacterial drugs [in Russian], Federal Center of Gossanepidnadzor, Ministry of Health of Russia, Moscow (2004).

  36. Guideline R3 51904 – 04. Use of ultraviolet bactericidal irradiation to disinfect air in rooms [in Russian], Federal Center of Gossanepidnadzor, Ministry of Health of Russia, Moscow (2005).

  37. J. Hudzicki, Kirby-Bauer disk diffusion susceptibility test protocol, American Society for Microbiology (2009), pp. 1 – 23.

  38. J. Kuo, Electron microscopy: Methods and protocols, Humana Press, Totowa (2007).

  39. F. D’Amico, Biotech. Histochem., 80(5 – 6), 207 – 210 (2005).

  40. G. M. Mehdiyeva, Russ. J. Appl. Chem., 95(2), 277 – 283 (2022).

    Article  CAS  Google Scholar 

  41. G. N. Chuvirov and T. P. Markova, Ross. Med. Zh., No. 15, 644 (2002).

  42. W. K. Jung, H. Ch. Koo, K. W. Kim, et al., Appl. Environ. Microbiol., 74(7), 2171 – 2178 (2008).

    Article  CAS  Google Scholar 

  43. M. A. Tartanson, L. Soussan, M. Rivallin, et al., Appl. Environ. Microbiol., 81, 7135 – 7142 (2015).

    Article  CAS  Google Scholar 

  44. I. M. Famuyide, F. O. Fasina, and J. N. Eloff, BMC Vet. Res., 16, 326 (2020).

  45. J. Wang, M. Ma, J. Yang, et al., J. Food Prot., 81(12), 1988 – 1996 (2018).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. M. Mehdiyeva.

Additional information

Translated from Khimiko-Farmatsevticheskii Zhurnal, Vol. 56, No. 10, pp. 10 – 16, October, 2022.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mehdiyeva, G.M. Synthesis of Allyl- and Propenyl-Substituted 1,3-Benzoxazines and Their Antimicrobial Activity. Pharm Chem J 56, 1314–1320 (2023). https://doi.org/10.1007/s11094-023-02791-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11094-023-02791-7

Keywords

Navigation