Skip to main content
Log in

Reactions of Quinolinecarbaldehydes with Arenes under Superelectrophilic Activation. NMR and DFT Studies of Dicationic Electrophilic Species

  • Published:
Chemistry of Heterocyclic Compounds Aims and scope

N,O-Diprotonated forms (dications) of various quinolinecarbaldehydes were theoretically studied by DFT calculations. It was found that the most reactive electrophilic dications are expected to be generated from 2- and 4-quinolinecarbaldehydes compared to the other quinolinecarbaldehydes. Experimental studies of protonation of quinoline-2(6,8)-carbaldehydes in Brønsted acids (CF3SO3H, H2SO4) by means of 1H, 13C, and 15N NMR revealed the formation of the corresponding N-protonated O-protosolvated species. Reactions of quinoline-2(6,8)-carbaldehydes with arenes in the presence of Brønsted (TfOH) and Lewis acids (AlX3, X = Cl, Br) or acidic zeolites led to the formation of the corresponding 2(6,8)-(diarylmethyl)quinolines. However, 6- and 8-quinolinecarbaldehydes gave additionally unusual products – 6(8)-(arylmethyl)quinolines.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1.
Figure 1.
Scheme 2.

Similar content being viewed by others

References

  1. Ebenso, E. E.; Obot, I. B.; Murulana, L. C. Int. J. Electrochem. Sci. 2010, 5, 1574.

    CAS  Google Scholar 

  2. Mohan, V.; Das, N.; Jain, V. K.; Khan, T.; Pandey, S. K.; Faizi, Md. S. H.; Daniel, J.; Sen, P. ChemistrySelect 2020, 5, 9435.

  3. Romanović, M. Č.; Čobeljić, B.; Pevec, A.; Turel, I.; Anđelković, K.; Milenković, M.; Radanović, D.; Belošević, S.; Milenković, M. R. J. Coord. Chem. 2017, 70, 2425.

    Article  Google Scholar 

  4. Bjelogrlić, S. K.; Todorović, T. R.; Kojić, M.; Senćanski, M.; Nikolić, M.; Višnjevac, A.; Araškov, J.; Miljković, M.; Muller, C. D.; Filipović, N. R. J. Inorg. Biochem. 2019, 199, 110758.

    Article  Google Scholar 

  5. Liang, F.; Xie, Z.; Wang, L.; Jing, X.; Wang, F. Tetrahedron Lett. 2002, 43, 3427.

    Article  CAS  Google Scholar 

  6. Korivi, R. P.; Cheng, C.-H. J. Org. Chem. 2006, 71, 7079.

    Article  CAS  Google Scholar 

  7. Kim, J. I.; Shin, I.-S.; Kim, H.; Lee, J.-K. J. Am. Chem. Soc. 2005, 127, 1614.

    Article  CAS  Google Scholar 

  8. Xu, Y.; Xu, P.; Hu, D.; Ma, Y. Chem. Soc. Rev. 2021, 50, 1030.

    Article  CAS  Google Scholar 

  9. Li, W.-Y.; Miao, K.; Wu, H.-L.; He, X.-W.; Liang, H. Microchim. Acta 2003, 143, 33.

    Article  CAS  Google Scholar 

  10. Zhang, N.; Zhang, H.-S.; Wang, H. Electrophoresis 2009, 30, 2258.

    Article  CAS  Google Scholar 

  11. Damant, A. P. In Handbook of Textile and Industrial Dyeing; Woodhead Publishing, 2011, vol. 2, p. 252.

    Article  Google Scholar 

  12. Upadhyay, K. D.; Dodia, N. M.; Khunt, R. C.; Chaniara, R. S.; Shah, A. K. ACS Med. Chem. Lett. 2018, 9, 283.

    Article  CAS  Google Scholar 

  13. Sharma, P. C.; Chaudhary, M.; Sharma, A.; Piplani, M.; Rajak, H.; Prakash, O. Curr. Top. Med. Chem. 2013, 13, 2076.

    Article  CAS  Google Scholar 

  14. Zhang, Z.; Xiao, X.; Su, T.; Wu, J.; Ren, J.; Zhu, J.; Zhang, X.; Cao, R.; Du, R. Eur. J. Med. Chem. 2017, 140, 239.

    Article  CAS  Google Scholar 

  15. Fan, Y.-L.; Wu, J.-B.; Cheng, X.-W.; Zhang, F.-Z.; Feng, L.-S. Eur. J. Med. Chem. 2018, 146, 554.

    Article  CAS  Google Scholar 

  16. Zhang, S.; Xu, Z.; Gao, C.; Ren, Q.-C.; Chang, L.; Lv, Z.-S.; Feng. L.-S. Eur. J. Med. Chem. 2017, 138, 501.

  17. Xu, Z.; Zhang, S.; Gao, C.; Fan, J.; Zhao, F.; Lv, Z.-S.; Feng, L.-S. Chin. Chem. Lett. 2017, 2, 159.

    Article  Google Scholar 

  18. Cannalire, R.; Barreca, M. L.; Manfroni, G.; Cecchetti, V. J. Med. Chem. 2016, 59, 16.

    Article  CAS  Google Scholar 

  19. Zhang, G.-F.; Liu, X.; Zhang, S.; Pan, B.; Liu, M.-L. Eur. J. Med. Chem. 2018, 146, 599.

    Article  CAS  Google Scholar 

  20. Zhang, G.-F.; Zhang, S.; Pan, B.; Liu, X.; Feng, L.-S. Eur. J. Med. Chem. 2018, 143, 710.

    Article  CAS  Google Scholar 

  21. Wang, Z.; Hu, J.; Yang, X.; Feng, X.; Li, X.; Huang, L.; Chan, A. S. C. J. Med. Chem. 2018, 61, 1871.

    Article  CAS  Google Scholar 

  22. Sekgota, K. C.; Majumder, S.; Isaacs, M.; Mnkandhla, D.; Hoppe, H. C.; Khanye, S. D.; Kriel, F. H.; Coates, J.; Kaye, P. T. Bioorg. Chem. 2017, 75, 310.

    Article  CAS  Google Scholar 

  23. Luo, Z. G.; Tan, J. J.; Zeng, Y.; Wang, C. X.; Hu, L. M. Mini Rev. Med. Chem. 2010, 10, 1046.

    Article  CAS  Google Scholar 

  24. Achan, J.; Talisuna, A. O.; Erhart, A.; Yeka, A.; Tibenderana, J. K.; Baliraine, F. N.; Rosenthal, P. J.; D'Alessandro, U. Malar. J. 2011, 10, 144.

    Article  CAS  Google Scholar 

  25. Kouznetsov, V. V.; Vargas Méndez, L. Y.; Meléndez Gómez, C. M. Cur. Org. Chem. 2005, 9, 141.

    Article  CAS  Google Scholar 

  26. Ryabukhin, D. S.; Vasilyev, A. V. Russ. Chem. Rev. 2016, 85, 637. [Usp. Khim. 2016, 85, 637. ]

  27. Khusnutdinov, R. I.; Bayguzina, A. R.; Dzhemilev, U. M. J. Organomet. Chem. 2014, 768, 75.

    Article  CAS  Google Scholar 

  28. Madapa, S.; Tusi, Z.; Batra, S. Curr. Org. Chem. 2008, 12, 1116.

    Article  CAS  Google Scholar 

  29. Boyarskiy, V. P.; Ryabukhin, D. S.; Bokach, N. A.; Vasilyev, A. V. Chem. Rev. 2016, 116, 5894.

    Article  CAS  Google Scholar 

  30. Koltunov, K. Yu.; Prakash, G. K. S.; Rasul, G.; Olah, G. A. J. Org. Chem. 2002, 67, 4330.

    Article  CAS  Google Scholar 

  31. Klumpp, D. A.; Jones, A.; Lau, S.; de Leon, S.; Garza, M. Synthesis 2000, 1117.

  32. Prakash, G. K. S.; Paknia, F.; Chacko, S.; Mathew, T.; Olah, G. A. Heterocycles 2008, 76, 783.

    Article  CAS  Google Scholar 

  33. Gurskaya, L. Yu.; Belyanskaya, D. S.; Ryabukhin, D. S.; Nilov, D. I.; Boyarskaya, I. A.; Vasilyev, A. V. Beilstein J. Org. Chem. 2016, 12, 950.

    CAS  Google Scholar 

  34. Ryabukhin, D. S.; Zakusilo, D. N.; Kompanets, M. O.; Tarakanov, A. A.; Boyarskaya, I. A.; Artamonova, T. O.; Khohodorkovskiy, M. A.; Opeida, I. O.; Vasilyev, A. V. Beilstein J. Org. Chem. 2016, 12, 2125.

    CAS  Google Scholar 

  35. Ryabukhin, D. S.; Turdakov, A. N.; Soldatova, N. S.; Kompanets, M. O.; Ivanov, A. Yu.; Boyarskaya, I. A.; Vasilyev, A. V. Beilstein. J. Org. Chem. 2019, 15, 1962.

    Article  CAS  Google Scholar 

  36. Borisova, M. A.; Ryabukhin, D. S.; Vasilyev, A. V. Chem. Heterocycl. Compd. 2020, 56, 964.

    Article  CAS  Google Scholar 

  37. Parr, R. G.; Szentpály, L. V.; Liu, S. J. Am. Chem. Soc. 1999, 121, 1922.

    Article  CAS  Google Scholar 

  38. Pelt, V. P.; Buck, H. M. J. Am. Chem. Soc. 1976, 98, 5864.

    Article  Google Scholar 

  39. Bartlett, P. D.; McCollu, J. D. J. Am. Chem. Soc. 1956, 78, 1441.

    Article  CAS  Google Scholar 

  40. Gronert, S.; Keeffe, J. R. J. Am. Chem. Soc. 2005, 127, 2324.

    Article  CAS  Google Scholar 

  41. Pelt, van, P. Proton Acid Catalysed Hydride Transfer from Alkanes to Methylated Benzyl Cations; Technische Hogeschool Eindhoven: Eindhoven, 1975.

    Google Scholar 

  42. Roberts, R. M.; El-Khawaga, A. M., Sweeney. K. M.; El-Zohry, M. F. J. Org. Chem. 1987, 52, 1591.

    Article  CAS  Google Scholar 

  43. Dolomanov, O. V.; Bourhis, L. J.; Gildea, R. J.; Howard, J. A. K.; Puschmann, H. J. Appl. Crystallogr. 2009, 42, 339.

    Article  CAS  Google Scholar 

  44. Sheldrick, G. M. Acta Crystallogr., Sect. A: Found. Crystallogr. 2008, A64, 112.

  45. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J. A., Jr.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Keith, T.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, O.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J.; Gaussian 09, Revision C.01, Gaussian, Inc.: Wallingford, 2010.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aleksander V. Vasilyev.

Additional information

Published in Khimiya Geterotsiklicheskikh Soedinenii, 2021, 57(10), 1007–1016

Supplementary Information

ESM 1

(PDF 3165 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Borisova, M.А., Ryabukhin, D.S., Ivanov, A.Y. et al. Reactions of Quinolinecarbaldehydes with Arenes under Superelectrophilic Activation. NMR and DFT Studies of Dicationic Electrophilic Species. Chem Heterocycl Comp 57, 1007–1016 (2021). https://doi.org/10.1007/s10593-021-03015-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10593-021-03015-0

Keywords

Navigation