Skip to main content
Log in

DFT study of the condensation products of 2-chloro-3-formylquinolines with o-aminophenol, o-aminothiophenol and o-phenylenediamine

  • Research
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

The reaction mechanism for the synthesis of quinoline-fused benzo/dia/oxa/thia/zepins is investigated using the DFT/B3LYP/6-31G(d) method. DFT conceptual reactivity indices analysis allows classification of o-aminophenol (2, X = O), o-aminothiophenol (2, X = S) and o-phenylenediamine (2, X = N) and R-substituted 2-chloroquinoline-3-carbaldehydes (1 ac) as strong electrophiles, suggesting a polar process. Besides, Parr functions and Fukui indices predict the most reactive sites for observed experimentally product formation, in agreement with the dual descriptor analysis. In the energy aspect, there is no effect of the R (R = CH3, OCH3) substituent on the thermodynamic quantities, whereas the substitution of the X has a remarkable effect. The products (4a–c, X = N) are the most stable, and their cyclizations are the easiest. An extended analysis was performed using the activation strain model/energy decomposition analysis ASM/EDA model. The obtained results indicate that the orbital interaction and electrostatic stabilizations are the principal factors favoring the reaction with X = N. Topological analysis of the electron localization function (ELF) of the bending point structures along the reaction path indicates that the reaction occurs via a non-concerted two-step mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Scheme 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Katritzky AR, Rees CW (1984) Comprehensive heterocyclic chemistry. Pergamon Press

    Google Scholar 

  2. Katritzky AR (1997) Advances in heterocyclic chemistry. Academic press

  3. Balaban AT, Oniciu DC, Katritzky AR (2004) Aromaticity as a cornerstone of heterocyclic chemistry. Chem Rev 104:2777–2812. https://doi.org/10.1021/CR0306790

    Article  CAS  PubMed  Google Scholar 

  4. Pozharskii AF, Soldatenkov AT, Katritzky AR (2011) Heterocycles in Life and Society: An Introduction to Heterocyclic Chemistry, Biochemistry and Applications: Second Edition. Heterocycles Life Soc An Introd to Heterocycl Chem Biochem Appl Second Ed. https://doi.org/10.1002/9781119998372

  5. Tsai M, Hong Y, Chang C et al (2007) 3-(9-Carbazolyl) carbazoles and 3, 6-Di (9-carbazolyl) carbazoles as effective host materials for efficient blue organic electrophosphorescence. Adv Mater 19:862–866

    Article  CAS  Google Scholar 

  6. Hu Z-J, Yang J-X, Tian Y-P et al (2007) Synthesis and optical properties of two 2, 2′: 6′, 2 ″-terpyridyl-based two-photon initiators. J Mol Struct 839:50–57

    Article  CAS  Google Scholar 

  7. Park S, Kwon O-H, Kim S et al (2005) Imidazole-based excited-state intramolecular proton-transfer materials: synthesis and amplified spontaneous emission from a large single crystal. J Am Chem Soc 127:10070–10074

    Article  CAS  PubMed  Google Scholar 

  8. Bhanumathi N, Rao KR, Sattur PB (1986) Novel formation of 11,12-dihydro-6H-quino[2,3-b] [1,5] benzodiazepines: reaction of 2-chloroquinoline-3-carbaldehydes with o-phenylenediamine. Heterocycles 24:1683–1685. https://doi.org/10.3987/R-1986-06-1683

    Article  CAS  Google Scholar 

  9. Zecchini GP, Torrini I, Paradisi MP (1987) Synthesis of quino/2,3-b //1,5/ benzoxazepines: a novel tetracyclic ring system. Heterocycles 26:2443–2447. https://doi.org/10.3987/R-1987-09-2443

    Article  Google Scholar 

  10. Torrini I, Zecchini GP, Paradisi MP (1988) The condensation products of 2-chloro-3-formylquinolines with o-aminothiophenol. Heterocycles (Sendai) 27:401–405

    Article  CAS  Google Scholar 

  11. Nielsen FE, Pedersen EB (1985) Annulated 1,2,3-triazoles. 3. Synthesis of 1,2,3-triazolo[4,5-b][1,5]benzoxazepin-10(9H)-ones and 10-(4-substituted-1-piperazinyl)-1,2,3-triazolo[4,5-b][1,5]benzoxazepines. J Heterocycl Chem 22:1693–1701. https://doi.org/10.1002/JHET.5570220645

    Article  CAS  Google Scholar 

  12. Becke AD (1993) Density-functional thermochemistry. III. The role of exact exchange. J Chem Phys 98:5648–5652. https://doi.org/10.1063/1.464913

    Article  CAS  Google Scholar 

  13. Lee C, Yang W, Parr RG (1988) Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B 37:785

    Article  CAS  Google Scholar 

  14. Frisch MJ, Trucks GW, Schlegel HB et al (2009) Gaussian 09, rev. Gaussian Inc, Wallingford

    Google Scholar 

  15. Head-Gordon M, Pople JA (1988) A method for two-electron Gaussian integral and integral derivative evaluation using recurrence relations. J Chem Phys 89:5777–5786

    Article  CAS  Google Scholar 

  16. Gonzalez C, Schlegel HB (1991) Improved algorithms for reaction path following: higher-order implicit algorithms. J Chem Phys 95:5853–5860

    Article  CAS  Google Scholar 

  17. Fukui K, Yonezawa T, Nagata C, Shingu H (1954) Molecular orbital theory of orientation in aromatic, heteroaromatic, and other conjugated molecules. J Chem Phys 22:1433–1442

    Article  CAS  Google Scholar 

  18. Fukui K (1970) Theory of orientation and stereoselection. In: Orientation and Stereoselection. Springer, pp 1–85

  19. Parr RG, Szentpály LV, Liu S (1999) Electrophilicity index. J Am Chem Soc 121:1922–1924

    Article  CAS  Google Scholar 

  20. Pérez P, Domingo LR, Aurell MJ, Contreras R (2003) Quantitative characterization of the global electrophilicity pattern of some reagents involved in 1, 3-dipolar cycloaddition reactions. Tetrahedron 59:3117–3125

    Article  Google Scholar 

  21. Domingo LR, Arnó M, Contreras R, Pérez P (2002) Density functional theory study for the cycloaddition of 1, 3-butadienes with dimethyl acetylenedicarboxylate. Polar stepwise vs concerted mechanisms. J Phys Chem A 106:952–961

    Article  CAS  Google Scholar 

  22. Parr RG, Yang W (1989) Density-functional theory of atoms and molecules Oxford Univ. Press. ed Oxford

  23. Parr RG, Pearson RG (1983) Absolute hardness: companion parameter to absolute electronegativity. J Am Chem Soc 105:7512–7516

    Article  CAS  Google Scholar 

  24. Chermette H (1999) Chemical reactivity indexes in density functional theory. J Comput Chem 20:129–154

    Article  CAS  Google Scholar 

  25. Kohn W, Sham LJ (1965) Self-consistent equations including exchange and correlation effects. Phys Rev 140:A1133

    Article  Google Scholar 

  26. Domingo LR, Chamorro E, Pérez P (2008) Understanding the reactivity of captodative ethylenes in polar cycloaddition reactions. A theoret study J Org Chem 73:4615–4624

    CAS  Google Scholar 

  27. Domingo LR, Pérez P (2011) The nucleophilicity N index in organic chemistry. Org Biomol Chem 9:7168–7175

    Article  CAS  PubMed  Google Scholar 

  28. Yang W, Mortier WJ (1986) The use of global and local molecular parameters for the analysis of the gas-phase basicity of amines. J Am Chem Soc 108:5708–5711

    Article  CAS  PubMed  Google Scholar 

  29. Chattaraj PK, Nath S, Sannigrahi AB (1994) Hardness, chemical potential, and valency profiles of molecules under internal rotations. J Phys Chem 98:9143–9145

    Article  CAS  Google Scholar 

  30. Domingo LR, Pérez P, Sáez JA (2013) Understanding the local reactivity in polar organic reactions through electrophilic and nucleophilic Parr functions. RSC Adv 3:1486–1494

    Article  CAS  Google Scholar 

  31. Chamorro E, Pérez P, Domingo LR (2013) On the nature of Parr functions to predict the most reactive sites along organic polar reactions. Chem Phys Lett 582:141–143

    Article  CAS  Google Scholar 

  32. Ayers PW, Morell C, De Proft F, Geerlings P (2007) Understanding the Woodward-Hoffmann rules by using changes in electron density. Chem Eur J 13:8240–8247

    Article  CAS  PubMed  Google Scholar 

  33. Morell C, Grand A, Toro-Labbé A (2006) Theoretical support for using the Δf (r) descriptor. Chem Phys Lett 425:342–346

    Article  CAS  Google Scholar 

  34. Becke AD, Edgecombe KE (1990) A simple measure of electron localization in atomic and molecular systems. J Chem Phys 92:5397–5403

    Article  CAS  Google Scholar 

  35. Gatti C (2005) Chemical bonding in crystals: new directions. Zeitschrift für Krist Mater 220:399–457

    CAS  Google Scholar 

  36. Silvi B, Savin A (1994) Classification of chemical bonds based on topological analysis of electron localization functions. Nature 371:683–686

    Article  CAS  Google Scholar 

  37. Savin A, Jepsen O, Flad J et al (1992) Electron localization in solid-state structures of the elements: the diamond structure. Angew Chemie Int Ed English 31:187–188

    Article  Google Scholar 

  38. Lu T, Chen F (2012) Multiwfn: a multifunctional wavefunction analyzer. J Comput Chem 33:580–592

    Article  PubMed  Google Scholar 

  39. Pettersen EF, Goddard TD, Huang CC et al (2004) UCSF Chimera—A visualization system for exploratory research and analysis. J Comput Chem 25:1605–1612

    Article  CAS  PubMed  Google Scholar 

  40. Domingo LR, Aurell MJ, Pérez P, Contreras R (2002) Quantitative characterization of the local electrophilicity of organic molecules. Understanding the regioselectivity on Diels−Alder reactions. J Phys Chem A 106:6871–6875

    Article  CAS  Google Scholar 

  41. Pérez P, Domingo LR, Duque-Noreña M, Chamorro E (2009) A condensed-to-atom nucleophilicity index. An application to the director effects on the electrophilic aromatic substitutions. J Mol Struct Theochem 895:86–91

    Article  Google Scholar 

  42. Reed AE, Weinhold F (1983) Natural bond orbital analysis of near-Hartree-Fock water dimer. J Chem Phys 78:4066–4073. https://doi.org/10.1063/1.445134

    Article  CAS  Google Scholar 

  43. Echegaray E, Cárdenas C, Rabi S et al (2013) In pursuit of negative Fukui functions: examples where the highest occupied molecular orbital fails to dominate the chemical reactivity. J Mol Model 19:2779–2783

    Article  CAS  PubMed  Google Scholar 

  44. Zamora PP, Bieger K, Cuchillo A et al (2021) Theoretical determination of a reaction intermediate: Fukui function analysis, dual reactivity descriptor and activation energy. J Mol Struct 1227:129369

    Article  CAS  Google Scholar 

  45. Bickelhaupt M, Bickelhaupt M (1999) Understanding reactivity with Kohn–Sham molecular orbital theory: E2–S. J Comput Chem 20:114–128

    Article  CAS  Google Scholar 

  46. Kelly TR, Hcnutt RW (1975) Cyclobutenone: the synthesis and Diels-Alder reactivity of 4,4-dimethylcyclobutenone. Tetrahedron Lett 4:285–288

    Article  Google Scholar 

  47. Hamlin TA, Fernández I, Bickelhaupt FM (2019) How Dihalogens Catalyze Michael Addition Reactions. Angew Chemie - Int Ed 58:8922–8926. https://doi.org/10.1002/anie.201903196

    Article  CAS  Google Scholar 

  48. Ess DH, Houk KN (2007) Distortion/interaction energy control of 1,3-dipolar cycloaddition reactivity. J Am Chem Soc 129:10646–10647. https://doi.org/10.1021/ja0734086

    Article  CAS  PubMed  Google Scholar 

  49. Ziegler T, Rauk A (1977) On the calculation of bonding energies by the Hartree Fock Slater method-I. The transition state method. Theor Chim Acta 46:1–10. https://doi.org/10.1007/BF02401406

    Article  CAS  Google Scholar 

  50. Wolters LP, Bickelhaupt FM (2015) The activation strain model and molecular orbital theory. Wiley Interdiscip Rev Comput Mol Sci 5:324–343. https://doi.org/10.1002/wcms.1221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. von Hopffgarten M, Frenking G (2012) Energy decomposition analysis. Wiley Interdiscip Rev Comput Mol Sci 2:43–62. https://doi.org/10.1002/wcms.71

    Article  CAS  Google Scholar 

  52. Liu S, Lei Y, Qi X, Lan Y (2014) Reactivity for the Diels-Alder reaction of cumulenes: A distortion-interaction analysis along the reaction pathway. J Phys Chem A 118:2638–2645. https://doi.org/10.1021/jp411914u

    Article  CAS  PubMed  Google Scholar 

  53. Levandowski BJ, Hamlin TA, Bickelhaupt FM, Houk KN (2017) Role of orbital interactions and activation strain (distortion energies) on reactivities in the normal and inverse electron-demand cycloadditions of strained and unstrained cycloalkenes. J Org Chem 82:8668–8675. https://doi.org/10.1021/acs.joc.7b01673

    Article  CAS  PubMed  Google Scholar 

  54. Jin R, Liu S, Lan Y (2015) Distortion–interaction analysis along the reaction pathway to reveal the reactivity of the Alder-ene reaction of enes. RSC Adv 5:61426–61435. https://doi.org/10.1039/C5RA10345B

    Article  CAS  Google Scholar 

  55. Fernández I, Bickelhaupt FM (2014) The activation strain model and molecular orbital theory: understanding and designing chemical reactions. Chem Soc Rev 43:4953–4967. https://doi.org/10.1017/CBO9780511544750.008

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization and methodology: were contributed by NB, HM, LM and CM. Investigation was contributed by NB, HM, NL, and HC. Writing—original draft preparation, was contributed by HM. Writing—review & editing, was contributed by CM, LM, HM. Experimental measurements were contributed by NB, NL, HM, AAM. Resources were contributed by NL and CM. Data curation was contributed by NB, HM, NL, LM, and HC. All authors have read and agreed to the published version of the manuscript.

Corresponding authors

Correspondence to Hafida Merouani or Henry Chermette.

Ethics declarations

Conflict of Interest

All authors have participated in (a) conception and design, or analysis and interpretation of the data; (b) drafting the article or revising it critically for important intellectual content; and (c) approval of the final version. The authors have no affiliation with any organization with a direct or indirect financial interest in the subject matter discussed in the manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 224 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Benabila, N., Merouani, H., Latelli, N. et al. DFT study of the condensation products of 2-chloro-3-formylquinolines with o-aminophenol, o-aminothiophenol and o-phenylenediamine. Theor Chem Acc 142, 111 (2023). https://doi.org/10.1007/s00214-023-03052-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-023-03052-2

Keywords

Navigation