Skip to main content
Log in

3-Nitro-1,2,4-triazol-5-one (NTO): High Explosive Insensitive Energetic Material

  • Published:
Chemistry of Heterocyclic Compounds Aims and scope

5-Nitro-3H-1,2,4-triazol-3-one (NTO) also known as nitrotriazolone is a low sensitive and thermally stable high energetic material containing a heterocyclic ring. NTO can be used to substitute highly sensitive high energetic materials that are thermally and photochemically less stable. This review provides a survey of various routes utilized for the synthesis of NTO, changes in its morphology by varying solvent systems, characterization, decomposition mechanisms, and use of metal oxides and other catalysts to enhance or diminish the thermal decomposition temperature of NTO. The review covers research on the synthesis, thermal decomposition mechanism, and catalytic effect of NTO additives from past four decades (1987–2021).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Scheme 3.
Figure 5.

Similar content being viewed by others

References

  1. Sikder, A. K.; Sikder, N. J. Hazard. Mater. 2004, 112, 1.

    Article  CAS  PubMed  Google Scholar 

  2. Hanafi, S.; Trache, D.; Abdous, S.; Bensalem, Z.; Mezroua, A. Chin. J. Energ. Mater. 2019, 27, 326.

    Google Scholar 

  3. Fried, L. E.; Manaa, M. R.; Pagoria, P. F.; Simpson, R. L. Annu. Rev. Mater. Res. 2001, 31, 291.

    Article  CAS  Google Scholar 

  4. Chaturvedi, S.; Dave, P. N. J. Saudi Chem. Soc. 2013, 17, 135.

    Article  CAS  Google Scholar 

  5. Trache, D.; Tarchoun, A. F. Crit. Rev. Anal. Chem. 2019, 49, 415.

    Article  CAS  PubMed  Google Scholar 

  6. Xu, J.-G.; Li, X.-Z.; Wu, H.-F.; Zheng, F.-K.; Chen, J.; Guo, G.-C. Cryst. Growth Des. 2019, 19, 3934.

    Article  CAS  Google Scholar 

  7. Snyder, C. J.; Wells, L. A.; Chavez, D. E.; Imler, G. H.; Parrish, D. A. Chem. Commun. 2019, 2461.

  8. Wang, Q.; Shao, Y.; Lu, M. Chem. Commun. 2019, 6062.

  9. Gamekkanda, J. C.; Sinha, A. S.; Aakeröy, C. B. Cryst. Growth Des. 2020, 20, 2432.

    Article  CAS  Google Scholar 

  10. Xu, J.; Zheng, S.; Huang, S.; Tian, Y.; Liu, Y.; Zhang, H.; Sun, J. Chem. Commun. 2019, 909.

  11. Tarchoun, A. F.; Trache, D.; Klapötke, T. M.; Khimeche, K. Chem. Eng. J. 2020, 400, 125960.

    Article  CAS  Google Scholar 

  12. Li, X.; Hu, S.; Cao, X.; Hu, L.; Deng, P.; Xie, Z. J. Energ. Mater. 2020, 38, 162.

    Article  CAS  Google Scholar 

  13. Ma, X.; Cai, C.; Sun, W.; Song, W.; Ma, Y.; Liu, X.; Xie, G.; Chen, S.; Gao, S. ACS Appl. Mater. Interfaces 2019, 11, 9233.

    Article  CAS  PubMed  Google Scholar 

  14. Deng, P.; Ren, H.; Jiao, Q. Vacuum 2019, 169, 108882.

    Article  CAS  Google Scholar 

  15. Tan, Y.; Yang, Z.; Wang, H.; Li, H.; Nie, F.; Liu, Y.; Yu, Y. Cryst. Growth Des. 2019, 19, 4476.

    Article  CAS  Google Scholar 

  16. Wang, P.-C.; Xu, Y.-G.; Wang, Q.; Shao, Y.-L.; Lin, Q.-H.; Lu, M. Sci. China Mater. 2019, 62, 122.

    Article  CAS  Google Scholar 

  17. Bian, C.; Feng, W.; Lei, Q.; Huang, H.; Li, X.; Wang, J.; Li, C.; Xiao, Z. Dalton Trans. 2020, 368.

  18. Xiong, H.; Yang, H.; Lei, C.; Yang, P.; Hu, W.; Cheng, G. Dalton Trans. 2019, 14705.

  19. Badgujar, D. M.; Talawar, M. B.; Asthana, S. N.; Mahulikar, P. P. J. Hazard. Mater. 2008, 151, 289.

    Article  CAS  PubMed  Google Scholar 

  20. Lee, K.-Y.; Chapman, L. B.; Cobura, M. D. J. Energ. Mater.1987, 5, 27.

    Article  CAS  Google Scholar 

  21. Jiang, L.; Fu, X.; Fan, X.; Li, J.; Xie, W.; Zhou, Z.; Zhang, G. FirePhysChem 2021, 1, 109. DOI: https://doi.org/10.1016/j.fpc.2021.04.00.

    Article  Google Scholar 

  22. Galante, E. B. F.; Mai, N.; Ladyman, M. K.; Gill, P. P.; Temple, T. J.; Coulon, F. J. Energ. Mater. 2021, 39, 85.

    Article  CAS  Google Scholar 

  23. Anniyappan, M.; Talawar, M. B.; Sinha, R. K.; Murthy, R. K. Combust., Explos. Shock Waves 2020, 56, 495.

  24. Wei, R.; Fei, Z.; Yoosefian, M. J. Mol. Liq. 2021, 336, 116372.

    Article  CAS  Google Scholar 

  25. Lent, E. M.; Narizzano, A. M.; Koistinen, K. A.; Johnson, M. S. Regul. Toxicol. Pharmacol. 2020, 112, 104609.

    Article  CAS  PubMed  Google Scholar 

  26. Madeira, C. L.; Speet, S. A.; Nieto, C. A.; Abrell, L.; Chorover, J.; Sierra-Alvarez, R.; Field, J. A. Chemosphere 2017, 167, 478.

    Article  CAS  PubMed  Google Scholar 

  27. Becher, J. B.; Beal, S. A.; Taylor, S.; Dontsova, K.; Wilcox, D. E. Chemosphere 2019, 228, 418.

    Article  CAS  PubMed  Google Scholar 

  28. Terracciano, A.; Christodoulatos, C.; Koutsospyros, A.; Zheng, Z.; Su, T.-L.; Smolinski, B.; Arienti, P.; Meng, X. Chem. Eng. J. 2018, 354, 481.

    Article  CAS  Google Scholar 

  29. Zhang, M.; Li, C.; Gao, H.; Fu, W.; Li, Y.; Tang, L.; Zhou, Z. J. Mater. Sci. 2016, 51, 10849.

    Article  CAS  Google Scholar 

  30. Yang, G.; Fude, N. Sci. Technol. Energ. Mater. 2006, 67, 77.

    CAS  Google Scholar 

  31. Jangid, S. K.; Radhakrishnan, S.; Solanki, V. J.; Singh, M. K.; Pandit, G.; Vijayalakshmi, R.; Sinha, R. K. J. Energ. Mater. 2019, 37, 320.

    Article  CAS  Google Scholar 

  32. Benhammada, A.; Trache, D. Appl. Spectrosc. Rev. 2020, 55, 724.

    Article  CAS  Google Scholar 

  33. Manchot, W.; Noll, R. Justus Liebigs Ann. Chem. 1905, 343, 1.

    Article  Google Scholar 

  34. Chipen, G. I.; Bokalder, R. P.; Grinshtein, V. Ya. Chem. Heterocycl. Compd. 1966, 2, 79. [Khim. Geterotsikl. Soedin. 1966, 110.]

  35. Mukundan, T.; Purandare, G. N.; Nair, J. K.; Pansare, S. M.; Sinha, R. K.; Singh, H. Def. Sci. J. 2002, 52(2), 127.

    Article  CAS  Google Scholar 

  36. Ciller Cortes, J. A.; Mendez Perez, A. EP Patent 0585235.

  37. Saikia, A.; Sivabalan, R.; Gore, G. M.; Sikder, A. K. Propellants, Explos., Pyrotech. 2012, 37, 540.

  38. Saikia, A.; Sivabalan, R.; Gore, G. M.; Sikder, A. K. J. Sci. Ind. Res. 2014, 73, 485.

    CAS  Google Scholar 

  39. Deshmukh, M. B.; Wagh, N. D.; Sikder, A. K.; Borse, A. U.; Dalal, D. S. Ind. Eng. Chem. Res. 2014, 53, 19375.

    Article  CAS  Google Scholar 

  40. Spear, R. J.; Louey, C. N.; Wolfson, M. G. A Preliminary Assessment of 3-Nitro-1,2,4-triazol-5-one (NTO) as an Insensitive High Explosive; MRL technical report MRL-TR-89-18; DSTO Materials Research Laboratory: Maribyrnong, 1989.

    Google Scholar 

  41. Collignon, S. L. US Patent 4894462.

  42. Lee, H.-Y.; Koo, K.-K.; Haam, S.; Kim, S.-H.; Kim, H.-S.; Park, B.-S. J. Chem. Eng. Jpn. 2000, 33, 842.

    Article  CAS  Google Scholar 

  43. Kayser, E. G. US Statutory Invention Registration H990.

  44. Yang, G.; Nie, F.; Li, J.; Guo, Q.; Qiao, Z. J. Energ. Mater.2007, 25, 35.

    Article  CAS  Google Scholar 

  45. Lee, K.-Y.; Asay, B. W.; Kennedy, J. E. US Patent 8557066.

  46. Smith, M. W.; Cliff, M. D. NTO-Based Explosive Formulations: A Technology Review; Technical report DSTO-TR-0796; DSTO Aeronautical and Maritime Research Laboratory: Salisbury, 1999.

  47. Rozin, Y. A.; Belyaev, N. A.; Bakulev, V. A.; Leban, I.; Azev, Y. A. Chem. Heterocycl. Compd. 2011, 46, 1534. [Khim. Geterotsikl. Soedin. 2010, 1896.]

  48. Starodubova, N. V.; Nikitin, V. G.; Kashaev, V. A.; Mezheritsky, S. E.; Makarov, V. V.; Marakhanova, D. A. Vestn. Kazan. Tekhnol. Univ. 2017, 20(4), 8.

  49. Kröger, C.-F.; Hummel, L.; Mutscher, M.; Beyer, H. Chem. Ber. 1965, 98, 3025.

    Article  Google Scholar 

  50. Rothgery, E. F. US Patent 9203424.

  51. Zbarsky, V. L.; Yudin, N. V. Propellants, Explos., Pyrotech. 2005, 30, 298.

  52. Viswanath, D. S.; Ghosh, T. K.; Boddu, V. M. Emerging Energetic Materials: Synthesis, Physicochemical, and Detonation Properties; Springer: Dordrecht, 2018, p. 163.

    Book  Google Scholar 

  53. Zbarsky, V. L.; Yudin, N. V.; Urazow, A. N.; Drachenina, A. In Proceedings of the 10th Seminar “New Trends in Research of Energetic Materials”; University of Pardubice: Pardubice, 2007, p. 978.

    Google Scholar 

  54. Trzciński, W. A.; Szala, M.; Rejmer, W. Propellants, Explos., Pyrotech. 2015, 40, 498.

  55. Zhao, Y.; Chen, S.; Jin, S.; Li, Z.; Zhang, X.; Wang, L.; Mao, Y.; Guo, H.; Li, L. J. Therm. Anal. Calorim. 2017, 128, 301.

    Article  CAS  Google Scholar 

  56. Gao, B.; Qiao, Z.; Yang, G. In Nanomaterials in Rocket Propulsion Systems; Yan, Q.-L.; He, G.-Q.; Liu, P.-J.; Gozin, M., Eds.; Elsevier: Amsterdam, 2019, p. 31.

  57. Kim, K.-J.; Kim, K.-M. Powder Technol. 2002, 122, 46.

    Article  CAS  Google Scholar 

  58. Ma, X.; Li, Y.; Hussain, I.; Shen, R.; Yang, G.; Zhang, K. Adv. Mater. 2020, 32, 2001291.

    Article  CAS  Google Scholar 

  59. Trache, D.; DeLuca, L. T. Nanomaterials 2020, 10, 2347.

    Article  CAS  PubMed Central  Google Scholar 

  60. Lee, K.; Gilardi, R. In Structure and Properties of Energetic Materials; Liebenberg, D. H.; Armstrong, R. W.; Gilman, J. J., Eds.; Materials Research Society: Pittsburgh, 1993, p. 237.

  61. Wallace, L.; Cronin, M. P.; Day, A. I.; Buck, D. P. Environ. Sci. Technol. 2009, 43, 1993.

    Article  CAS  PubMed  Google Scholar 

  62. Östmark, H.; Bergman, H.; Åqvist, G. Thermochim. Acta 1993, 213, 165.

    Article  Google Scholar 

  63. Oxley, J. C.; Smith, J. L.; Zhou, Z.; McKenney, R. L. J. Phys. Chem. 1995, 99, 10383.

    Article  CAS  Google Scholar 

  64. Beardall, D. J.; Botcher, T. R.; Wight, C. A. MRS Online Proc. Libr. 1995, 418, 379.

    Article  Google Scholar 

  65. Oxley, J. C.; Smith, J. L.; Rogers, E.; Dong, X. X. J. Phys. Chem. A 1997, 101, 3531.

    Article  CAS  Google Scholar 

  66. Beard, B. C.; Sharma, J. J. Energ. Mater.1989, 7, 181.

    Article  Google Scholar 

  67. Menapace, J. A.; Marlin, J. E.; Bruss, D. R.; Dascher, R. V. J. Phys. Chem. 1991, 95, 5509.

    Article  CAS  Google Scholar 

  68. Rothgery, E. F.; Audette, D. E.; Wedlich, R. C.; Csejka, D. A. Thermochim. Acta 1991, 185, 235.

    Article  CAS  Google Scholar 

  69. Williams, G. K.; Palopoli, S. F.; Brill, T. B. Combust. Flame 1994, 98, 197.

    Article  Google Scholar 

  70. Prabhakaran, K. V.; Naidu, S. R.; Kurian, E. M. Thermochim. Acta 1994, 241, 199.

    Article  CAS  Google Scholar 

  71. Botcher, T. R.; Beardall, D. J.; Wight, C. A.; Fan, L.; Burkey, T. J. J. Phys. Chem. 1996, 100, 8802.

    Article  CAS  Google Scholar 

  72. Lan, G.; Li, J.; Zhang, G.; Ruan, J.; Lu, Z.; Jin, S.; Cao, D.; Wang, J. Fuel 2021, 295, 120655.

    Article  CAS  Google Scholar 

  73. Chaturvedi, S.; Dave, P. N. J. Exp. Nanosci. 2012, 7, 205.

    Article  CAS  Google Scholar 

  74. Vara, J. A.; Dave, P. N.; Chaturvedi, S. Def. Technol. 2019, 15, 629.

    Article  Google Scholar 

  75. Usman, M.; Wang, L.; Yu, H.; Haq, F.; Haroon, M.; Summe Ullah, R.; Khan, A.; Fahad, S.; Nazir, A.; Elshaarani, T. J. Organomet. Chem. 2018, 872, 40.

    Article  CAS  Google Scholar 

  76. Bagalkote, V.; Grinstein, D.; Natan, B. Propellants, Explos., Pyrotech. 2018, 43, 136.

    Article  CAS  Google Scholar 

  77. Kumar, D.; Kapoor, I. P. S.; Singh, G.; Siril, P. F.; Tripathi, A. M. Propellants, Explos., Pyrotech. 2011, 36, 268.

  78. Hanafi, S.; Trache, D.; He, W.; Xie, W.-X.; Mezroua, A.; Yan, Q.-L. Thermochim. Acta 2020, 692, 178747.

    Article  CAS  Google Scholar 

  79. Dubey, R.; Srivastava, P.; Kapoor, I. P. S.; Singh, G. Thermochim. Acta 2012, 549, 102.

    Article  CAS  Google Scholar 

  80. Liu, G.; Wei, S. H.; Zhang, C. Cryst. Growth Des. 2020, 20, 7065.

    Article  CAS  Google Scholar 

  81. Zhang, C.; Xue, X.; Cao, Y.; Zhou, J.; Zhang, A.; Li, H.; Zhou, Y.; Xu, R.; Gao, T. CrystEngComm 2014, 16, 5905.

    Article  CAS  Google Scholar 

  82. Zhang, L.; Wu, J.-Z.; Jiang, S.-L.; Yu, Y.; Chen, J. Phys. Chem. Chem. Phys. 2016, 18, 26960.

    Article  CAS  PubMed  Google Scholar 

  83. Song, K.; Ren, F.; Zhang, S.; Shi, W. J. Mol. Model. 2016, 22, 249.

    Article  PubMed  CAS  Google Scholar 

  84. Wu, J. T.; Zhang, J. G.; Li, T.; Li, Z. M.; Zhang, T. L. RSC Adv. 2015, 5, 28354.

    Article  CAS  Google Scholar 

  85. Li, J. C.; Jiao, Q. J.; Gong, Y. G.; Wang, Y. Y.; Liang, T.; Sun, J. IOP Conf. Ser.: Mater. Sci. Eng. 2018, 292, 012032.

  86. Liu, Y.; Gou, R.; Zhang, S.; Chen, Y.; Cheng, H. J.; Chen, M. Comput. Mater. Sci. 2019, 163, 308.

    Article  CAS  Google Scholar 

  87. Hang, G. Y.; Yu, W. L.; Wang, T.; Wang, J.-T.; Li, Z. Theor. Chem. Acc. 2018, 137, 114.

    Article  CAS  Google Scholar 

  88. Lin, H.; Zhu, S.-G.; Zhang, L.; Peng, X.-H.; Chen, P.-Y.; Li, H.-Z. Int. J. Quantum Chem. 2013, 113, 1591.

    Article  CAS  Google Scholar 

  89. Du, L.; Jin, S.; Shu, Q.; Li, L.; Chen, K.; Chen, M.; Wang, J. Def. Technol. 2021. https://doi.org/10.1016/j.dt.2021.04.002

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pragnesh N. Dave.

Additional information

Published in Khimiya Geterotsiklicheskikh Soedinenii, 2021, 57(7/8), 720–730

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sirach, R.R., Dave, P.N. 3-Nitro-1,2,4-triazol-5-one (NTO): High Explosive Insensitive Energetic Material. Chem Heterocycl Comp 57, 720–730 (2021). https://doi.org/10.1007/s10593-021-02973-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10593-021-02973-9

Keywords

Navigation