Skip to main content
Log in

Different behavior of azomethine ylides derived from 11H-indeno[1,2-b]quinoxalin-11-one and proline/sarcosine in reactions with 3-nitro-2H-chromenes

  • Published:
Chemistry of Heterocyclic Compounds Aims and scope

(3+2) Cycloaddition of azomethine ylide generated in situ from 11H-indeno[1,2-b]quinoxalin-11-one and proline to 3-nitro-2-trifluoro- (trichloro)methyl- and 3-nitro-2-phenyl-2H-chromenes upon heating in EtOH proceeded regio- and stereoselectively, resulting in the formation of spiro[chromeno[3,4-a]pyrrolizine-11,11'-indeno[1,2-b]quinoxalines]. An analogous reaction using ylide derived from sarcosine under the conditions of kinetic control led to preferential formation of diastereomeric spiro[chromeno[3,4-c]pyrrolidine-3,11'-indeno[1,2-b]quinoxalines] with different configuration of the spiro atom, which were transformed upon heating in DMSO into the thermodynamically more stable spiro[chromeno[3,4-c]pyrrolidine-1,11'-indeno[1,2-b]quinoxalines].

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.

Similar content being viewed by others

References

  1. (a) Lashgari, N.; Ziarani, G. M. ARKIVOC2012, (i), 277. (b) Arumugam, N.; Kumar, R. S.; Almansour, A. I.; Perumal, S. Curr. Org. Chem.2013, 17, 1929. (c) Santos, M. M. M. Tetrahedron2014, 70, 9735. (d) Sing, M. S.; Chowdhury, S.; Koley, S. Tetrahedron2016, 72, 1603. (e) Saraswat, P.; Jeyabalan, G.; Hassan, M. Z.; Rahman, M. U.; Nyola, N. K. Synth. Commun.2016, 46, 1643. (f) Döndas, H. A.; de Gracia Retamosa, M.; Sansano, J. M. Synthesis2017, 2819. (g) Nájera, C.; Sansano, J. M. Pure Appl. Chem.2019, 91, 575.

  2. (a) Hartmann, T.; Witte, L. In Alkaloids: Chemical and Biological Perspectives; Pelletier, S. W., Ed.; Pergamon Press: Oxford, 1995, Vol. 9, p. 155. (b) Liddell, J. R. Nat. Prod. Rep.1996, 13, 187. (c) García Prado, E.; García Gimenez, M. D.; De la Puerta Vázquez, R.; Espartero Sánchez, J. L.; Sáenz Rodríguez, M. T. Phytomedicine2007, 14, 280. (d) Yu, B.; Yu, D.-Q.; Liu, H.-M. Eur. J. Med. Chem.2015, 97, 673. (e) Haight, A. R.; Bailey, A. E.; Baker, W. S.; Cain, M. H.; Copp, R. R.; DeMattei, J. A.; Ford, K. L.; Henry, R. F.; Hsu, M. C.; Keyes, R. F.; King, S. A.; McLaughlin, M. A.; Melcher, L. M.; Nadler, W. R.; Oliver, P. A.; Parekh, S. I.; Patel, H. H.; Seif, L. S.; Staeger, M. A.; Wayne, G. S.; Wittenberger, S. J.; Zhang, W. Org. Process Res. Dev.2004, 8, \897.

  3. (a) Korotaev, V. Yu.; Sosnovskikh, V. Ya.; Barkov, A. Yu. Russ. Chem. Rev.2013, 82, 1081. [Usp. Khim.2013, 82, 1081.] (b) Halimehjani, A. Z.; Namboothiri, I. N. N.; Hooshmand, S. E. RSC Adv.2014, 4, 48022. (c) Vroemans, R.; Dehaen, W. In Targets in Heterocyclic Systems; Attanasi, O. A.; Merino, P.; Spinelli, D., Eds.; Società Chimica Italiana: Roma, 2018, Vol. 22, p. 318. (d) Korotaev, V. Yu.; Kutyashev, I. B.; Barkov, A. Yu.; Sosnovskikh, V. Ya. Russ. Chem. Rev.2019, 88, 27. [Usp. Khim.2019, 88, 27.]

  4. (a) Nyerges, M.; Virányi, A.; Marth, G.; Dancsó, A.; Blaskó, G.; Tőke. L. Synlett2004, 2761. (b) Virányi, A.; Marth, G.; Dancsó, A.; Blaskó, G.; Tőke, L.; Nyerges, M. Tetrahedron2006, 62, 8720. (c) Rao, J. N. S.; Raghunathan, R. Tetrahedron Lett.2013, 54, 6568. (d) Jiang, W.; Sun, J.; Yan, C.-G. RSC Adv.2017, 7, 42387. (e) Nayak, S.; Mishra, S. K.; Bhakta, S.; Panda, P.; Baral, N.; Mohapatra, S.; Purohit, C. S.; Satha, P. Lett. Org. Chem.2016, 13, 11. (f) Wu, S.; Zhu, G.; Wei, S.; Chen, H.; Qu, J.; Wang, B. Org. Biomol. Chem.2018, 16, 807.

  5. Korotaev, V. Yu.; Zimnitskiy, N. S.; Barkov, A. Yu.; Kutyashev, I. B.; Sosnovskikh, V. Ya. Chem. Heterocycl. Compd.2018, 54, 905. [Khim. Geterotsikl. Soedin.2018, 54, 905.]

  6. (a) Schepetkin, I. A.; Kirpotina, L. N.; Khlebnikov, A. I.; Hanks, T. S.; Kochetkova, I.; Pascual, D. W.; Jutila, M. A.; Quinn, M. T. Mol. Pharmacol.2012, 81, 832. (b) Khan, M. S.; Munawar, M. A.; Ashraf, M.; Alam, U.; Ata, A.; Asiri, A. M.; Kousar, S.; Khan, M. A. Bioorg. Med. Chem.2014, 22, 1195. (c) Zhang, C.; Li, S.; Ji, L.; Liu, S.; Li, Z.; Li, S.; Meng, X. Bioorg. Med. Chem. Lett.2015, 25, 4693. (d) Tseng, C.-H.; Chen, Y.-R.; Tzeng, C.-C.; Liu, W.; Chou, C.-K.; Chiu, C.-C.; Chen, Y.-L. Eur. J. Med. Chem.2016, 108, 258.

  7. (a) Kathiravan, S.; Raghunathan, R.; Suresh, G.; Siva, G. V. Med. Chem. Res.2012, 21, 3170. (b) Akondi, A. M.; Mekala, S.; Kantam, M. L.; Trivedi, R.; Chowhan, L. R.; Das, A. New J. Chem.2017, 41, 873. (c) Mani, K. S.; Kaminsky, W.; Rajendran, S. P. New J. Chem.2018, 42, 301. (d) Filatov, A. S.; Knyazev, N. A.; Ryazantsev, M. N.; Suslonov, V. V.; Larina, A. G.; Molchanov, A. P.; Kostikov, R. R.; Boitsov, V. M.; Stepakov, A. V. Org. Chem. Front.2018, 5, 595.

  8. (a) Hamzehloueian, M.; Sarrafi, Y.; Aghaei, Z. RSC Adv.2015, 5, 76368. (b) Barkov, A. Yu.; Zimnitskiy, N. S.; Korotaev, V. Yu.; Kutyashev, I. B.; Moshkin, V. S.; Sosnovskikh, V. Ya. Chem. Heterocycl. Compd.2017, 53, 451. [Khim. Geterotsikl. Soedin.2017, 53, 451.]

  9. Rao, J. N. S.; Raghunathan, R. Tetrahedron Lett.2015, 56, 2276.

    Article  Google Scholar 

  10. Nayak, S.; Pattanaik, P.; Mohapatra, S.; Mishra, D. R.; Panda, P.; Raiguru, B.; Mishra, N. P.; Jena, S.; Biswal, H. S. Synth. Commun.2019, 49, 1823.

    Article  CAS  Google Scholar 

  11. (a) Korotaev, V. Yu.; Barkov, A. Yu.; Moshkin, V. S.; Matochkina, E. G.; Kodess, M. I.; Sosnovskikh, V. Ya. Tetrahedron2013, 69, 8602. (b) Korotaev, V. Yu.; Kutyashev, I. B.; Barkov, A. Yu.; Sosnovskikh, V. Ya. Chem. Heterocycl. Compd.2017, 53, 1192. [Khim. Geterotsikl. Soedin.2017, 53, 1192.] (c) Korotaev, V. Yu.; Kutyashev, I. B.; Barkov, A. Yu.; Sosnovskikh, V. Ya. Chem. Heterocycl. Compd.2018, 54, 852. [Khim. Geterotsikl. Soedin.2018, 54, 852.] (d) Kutyashev, I. B.; Barkov, A. Yu.; Korotaev, V. Yu.; Sosnovskikh, V. Ya. Chem. Heterocycl. Compd.2019, 55, 529. [Khim. Geterotsikl. Soedin.2019, 55, 529.]

  12. Alimohammadi, K.; Sarrafi, Y.; Tajbakhsh, M.; Yeganegi, S.; Hamzehloueian, M. Tetrahedron2011, 67, 1589.

    Article  CAS  Google Scholar 

  13. Korotaev, V. Yu.; Kutyashev, I. B.; Barkov, A. Yu.; Sosnovskikh, V. Ya. Chem. Heterocycl. Compd.2017, 53, 597. [Khim. Geterotsikl. Soedin.2017, 53, 597.]

  14. (a) Korotaev, V. Yu.; Kutyashev, I. B.; Sosnovskikh, V. Ya. Heteroat. Chem. 2005, 16, 492. (b) Sakakibara, T.; Koezuka, M.; Sudoh, R. Bull. Chem. Soc. Jpn. 1978, 51, 3095.

  15. Sheldrick, G. M. Acta Crystallogr., Sect. A: Found. Crystallogr. 2008, A64, 112.

Download references

This work received financial support from the Russian Foundation for Basic Research (grant 18-33-00635) and within the framework of State Assignment of the Ministry of Science and Higher Education of the Russian Federation (project 4.6653.2017/8.9).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladislav Yu. Korotaev.

Additional information

Translated from Khimiya Geterotsiklicheskikh Soedinenii, 2019, 55(9), 861–874

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kutyashev, I.B., Barkov, A.Y., Zimnitskiy, N.S. et al. Different behavior of azomethine ylides derived from 11H-indeno[1,2-b]quinoxalin-11-one and proline/sarcosine in reactions with 3-nitro-2H-chromenes. Chem Heterocycl Comp 55, 861–874 (2019). https://doi.org/10.1007/s10593-019-02550-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10593-019-02550-1

Keywords

Navigation