Skip to main content

Advertisement

Log in

A genomic perspective on the conservation status of the endangered Nashville crayfish (Faxonius shoupi)

  • Research Article
  • Published:
Conservation Genetics Aims and scope Submit manuscript

Abstract

The Nashville crayfish (Faxonius shoupi, Hobbs 1948) was federally listed as an endangered species in 1986 due to its limited distribution in the Mill Creek watershed; this waterway lies in the rapidly developing Nashville basin and has experienced habitat degradation due to agricultural run-off, contamination, and urban development. Recovery efforts, including dam removal and restoration of riparian zones, have improved conditions in Mill Creek and F. shoupi has increased in numbers and recolonized extirpated stream segments. However, a history of demographic bottlenecks and restricted gene flow may have negatively impacted the long-term recovery of this species. A recently discovered population of F. shoupi in a disjunct segment of the Lower Tennessee River at the Pickwick Tailwater may provide an additional source of genetic variation. Uncertainty surrounding the origins of the Pickwick population and its taxonomic relationship to F. shoupi in Mill Creek raises questions about the conservation and management implications of this population. We used mitochondrial sequencing and SNP genotyping to assess genetic variation and connectivity of F. shoupi in the Mill Creek drainage and to investigate the taxonomy and demographic history of the newly discovered population at Pickwick. We found substantial genetic variation and evidence of connectivity for samples throughout Mill Creek for both mitochondrial and genome-wide SNPs. Our results also suggest a recently severed connection between crayfish in Pickwick and Mill Creek. Unique mitochondrial haplotypes and SNP variation in the Pickwick population highlight the need for prioritizing this population in future conservation and management plans for this species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

Raw sequence reads obtained from GBS sequencing are available at NIH Sequence Read Archive: BioProject PRJNA817058. Mitochondrial sequences from Sanger sequencing are deposited on Genbank: Accession Numbers ON025677-ON025783.

References

  • Allendorf FW (1986) Genetic drift and the loss of alleles versus heterozygosity. Zoo Biol 5:181–190

    Article  Google Scholar 

  • Barrociere LJ (1986) The ecological assessment and distribution status of the Nashville Crayfish, Orconectes shoupi. Thesis, Tennessee Technological University

  • Bizwell EA, Mattingly HT (2010) Aggressive Interactions of the Endangered Nashville Crayfish, Orconectes shoupi. Southeast Nat 9:359–372

    Article  Google Scholar 

  • Bouchard RW (1972) A contribution to the knowledge of Tennessee crayfish. Dissertation, University of Tennessee, Knoxville

  • Bouchard RW (1974) Crayfishes of the Nashville Basin, Tennessee, Alabama and Kentucky (Decapoda, Astacidae). Assoc Southeast Biol Bull 21:41

    Google Scholar 

  • Bouchard RW (1976) Geography and ecology of crayfishes of the Cumberland Plateau and Cumberland Mountains, Kentucky, Virginia, Tennessee, Georgia, and Alabama. Part I. The genera of Procambarus and Orconectes. Freshw Crayfish 2:563–584

    Google Scholar 

  • Bouchard RW (1984) Distribution and status of the endangered crayfish Orconectes shoupi (Decapoda: Cambaridae). Report, USFWS

  • Carpenter J (2002) Recolonization of depleted areas by the Nashville Crayfish. Report, USFWS

  • Catchen J, Hohenlohe PA, Bassham S, Amores A, Cresko WA (2013) Stacks: an analysis tool set for population genomics. Mol Ecol 22:3124–3140

    Article  PubMed  PubMed Central  Google Scholar 

  • Chang CC, Chow CC, Tellier LC, Vattikuti S, Purcell SM, Lee JJ (2015) Second-generation PLINK: rising to the challenge of larger and richer datasets. Gigascience 4(1):s13742–s14015

    Article  CAS  Google Scholar 

  • Cornuet JM, Gordon L (1996) Description and power analysis of two tests for detecting recent population bottlenecks from allele frequency data. Genetics 144:2001–2014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Couch ZL, Schuster GA (2020) Changes to Kentucky’s Crayfish Fauna Since 2004 with an Updated Checklist of Kentucky Crayfish Species. J Ky Acad Sci 80:38–46

    Google Scholar 

  • Do C, Waples RS, Peel D, Macbeth GM, Tillett BJ, Ovenden JR (2014) NeEstimator v2: re-implementation of software for the estimation of contemporary effective population size (Ne) from genetic data. Mol Ecol Resour 14:209–214

    Article  CAS  PubMed  Google Scholar 

  • Durand JB (1960) Limb regeneration and endocrine activity in the crayfish. Biol Bull 118:250–261

    Article  Google Scholar 

  • Earl DA (2012) STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv Genet Resour 4:359–361

    Article  Google Scholar 

  • Elshire RJ, Glaubitz JC, Sun Q, Poland JA, Kawamoto K, Buckler ES, Mitchell SE (2011) A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species. PLoS ONE 6:e19379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14:2611–2620

    Article  CAS  PubMed  Google Scholar 

  • Excoffier L, Lischer HE (2010) Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Mol Ecol Resour 10:564–567

    Article  PubMed  Google Scholar 

  • Excoffier L, Smouse PE, Quattro JM (1992) Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics 131:479–491

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fitzpatrick BM, Fordyce JA, Niemiller ML, Reynolds RG (2012) What can DNA tell us about biological invasions? Biol Invasions 14:245–253

    Article  Google Scholar 

  • Fleming RS (1939) The larger crustacea of the Nashville region. J Tennessee Acad Sci 13:261–264

    Google Scholar 

  • Flouri T, Jiao X, Rannala B, Yang Z (2020) A Bayesian implementation of the multispecies coalescent model with introgression for phylogenomic analysis. Mol Biol Evol 37:1211–1223

    Article  CAS  PubMed  Google Scholar 

  • Folmer O, Hoeh WR, Black MB, Vrijenhoek RC (1994) Conserved primers for PCR amplification of mitochondrial DNA from different invertebrate phyla. Mol Mar Biol Biotech 3:294–299

    CAS  Google Scholar 

  • Galloway WE, Whiteaker TL, Ganey-Curry P (2011) History of Cenozoic North American drainage basin evolution, sediment yields, and accumulation in the Gulf of Mexico basin. Geosphere 7:938–973

    Article  Google Scholar 

  • Gautier M et al (2013) The effect of RAD allele dropout on the estimation of genetic variation within and between populations. Mol Ecol 22:3165–3178

    Article  CAS  PubMed  Google Scholar 

  • Grubb B (2020) Phylogeography and population genetics of a headwater-stream adapted crayfish, Cambarus pristinus (Decapoda: Cambaridae), from the Cumberland Plateau in Tennessee. M.S. Thesis Austin Peay State University.

  • Haag WR, Cicerello RR (2016) A distributional atlas of the freshwater mussels of Kentucky. Scientific and Technical Series 8, Kentucky State Nature Preserves Commission, Frankfort.

  • Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. In: Nucleic Acids Symposium Series, vol 41, pp 95–98

  • Hartl DL, Clark AG (1997) Principles of population genetics, vol 116. Sinauer Associates, Sunderland

    Google Scholar 

  • Hartl DL, Clark AG (1997b) Principles of Population Genetics, 3rd edn. Sinauer Associates Inc, Sunderland, MA

    Google Scholar 

  • Hasegawa M, Kishino H, Yano T (1985) Dating the human-ape split by a molecular clock of mitochondrial DNA. J Mol Evol 22:160–174

    Article  CAS  PubMed  Google Scholar 

  • Hedgecock D, Pudovkin AI (2011) Sweepstakes reproductive success in highly fecund marine fish and shellfish: a review and commentary. Bull Mar Sci 87:971–1002

    Article  Google Scholar 

  • Hedrick P (2005) Large variance in reproductive success and the Ne/N ratio. Evolution 59:1596–1599

    Article  PubMed  Google Scholar 

  • Hobbs HH Jr (1948) A new crayfish of the genus Orconectes from southern Tennessee. Proc Biol Soc Wash 61:85–92

    Google Scholar 

  • Hobbs HH Jr (1969) On the distribution and phylogeny of the crayfish genus Cambarus. The distributional history of the biota of the southern Appalachians Part I: invertebrates. Res Div Monogr 1:93–178

    Google Scholar 

  • Hobbs HH, Shoup CS (1942) (1942) On the crayfishes collected from the Big South Fork of the Cumberland River in Tennessee during the summer of 1938. Am Midl Nat 28(3):634–643

    Article  Google Scholar 

  • Jakobsson M, Rosenberg NA (2007) CLUMPP: a cluster matching and permutation program for dealing with label switching and multimodality in analysis of population structure. Bioinformatics 23:1801–1806

    Article  CAS  PubMed  Google Scholar 

  • Johnson JR, Thomson RC, Micheletti SJ, Shaffer HB (2011) The origin of tiger salamander (Ambystoma tigrinum) populations in California, Oregon, and Nevada: introductions or relicts? Conserv Genet 12:355–370

    Article  Google Scholar 

  • Jombart T, Devillard S, Balloux F (2010) Discriminant analysis of principal components: a new method for the analysis of genetically structured populations. BMC Genomics 11:94

    CAS  Google Scholar 

  • Jp VÄHÄ, Erkinaro J, Niemela E, Primmer CR (2007) Life-history and habitat features influence the within-river genetic structure of Atlantic salmon. Mol Ecol 16:2638–2654

    Article  Google Scholar 

  • Kumar S, Stecher G, Li M, Knyaz C, Tamura K (2018) MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol 35:1547–1549

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Larson ER, Olden JD (2016) Field sampling techniques for crayfish. In: Longshaw M, Stebbing P (eds) Biology and ecology of crayfish. CRC Press, Boca Raton, pp 284–358

    Google Scholar 

  • Larson ER, Abbott CL, Usio N, Azuma N, Wood KA, Herborg LM, Olden JD (2012) The signal crayfish is not a single species: cryptic diversity and invasions in the Pacific Northwest range of Pacifastacus leniusculus. Freshw Biol 57:1823–1838

    Article  Google Scholar 

  • Loiseau MT, Pudlo P, Kerdelhué C, Estoup A (2013) Estimation of population allele frequencies from next-generation sequencing data: pool-versus individual-based genotyping. Mol Ecol 22:3766–3779

    Article  PubMed  CAS  Google Scholar 

  • Luikart G, Allendorf FW, Cornuet JM, Sherwin WB (1998) Distortion of allele frequency distributions provides a test for recent population bottlenecks. J Hered 89:238–247

    Article  CAS  PubMed  Google Scholar 

  • Meirmans PG (2006) Using the AMOVA framework to estimate a standardized genetic differentiation measure. Evolution 60:2399–2402

    Article  PubMed  Google Scholar 

  • Meirmans PG, Hedrick PW (2011) Assessing population structure: FST and related measures. Mol Ecol Resour 11:5–18

    Article  PubMed  Google Scholar 

  • Miller AC, Hartheld PD, Rhodes L (1990) An investigaion of Orconectes shoupi in Mill Creek and Sevenmile Creeks, Tennessee. J Tennessee Acad Sci 65:21–24

    Google Scholar 

  • Miller AC, Hartfield PD (1987) A study of Orconectes shoupi, Mill Creek Basin, Tennessee, 1985. Mississippi Museum of Natural Science Jackson, Mississippi

  • Miller MA, Pfeiffer W, Schwartz T (2011) The CIPRES science gateway: a community resource for phylogenetic analyses. In: Proceedings of the 2011 TeraGrid Conference: Extreme Digital Discovery, pp 1–8

  • Mlinarec J, Porupski I, Maguire I, Klobučar G (2016) Comparative karyotype investigations in the white-clawed crayfish Austropotamobius pallipes species complex and stone crayfish A. torrentium (Decapoda: Astacidae). J Crustac Biol 36:87–93

    Google Scholar 

  • Morin PA, Martien KK, Taylor BL (2009) Assessing statistical power of SNPs for population structure and conservation studies. Mol Ecol Resour 9:66–73

    Article  CAS  PubMed  Google Scholar 

  • Nei M, Maruyama T, Chakraborty R (1975) The bottleneck effect and genetic variability in populations. Evolution 9:1–10

    Article  Google Scholar 

  • O'Bara CJ, Korgi AJ, Stark 0J (1985) Status survey of Nashville crayfish, Orconectes shoupi. Letter report submitted to the U.S. Fish and Wildlife Service, Asheville, North Carolina, Tennessee Technological University, Cookeville, Tennessee

  • Ortmann AE (1918) The naiads (freshwater mussels) of the upper Tennessee drainage. With notes on synonymy and distribution. Proc Am Philos Soc 57:521–626

    Google Scholar 

  • Paradis E (2010) pegas: an R package for population genetics with an integrated–modular approach. Bioinformatics 26:419–420

    Article  CAS  PubMed  Google Scholar 

  • Piry S, Luikart G, Cornuet JM (1999) Computer note. BOTTLENECK: a computer program for detecting recent reductions in the effective size using allele frequency data. J Hered 90:502–503

    Article  Google Scholar 

  • Poly WJ, Wetzel JE (2003) Distribution and taxonomy of three species of Orconectes (Decapoda: Cambaridae) in Illinois, USA. J Crustac Biol 23:380–390

    Google Scholar 

  • Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Racine JS (2012) RStudio: a platform-independent IDE for R and Sweave. 167–172.

  • Ramasamy RK, Ramasamy S, Bindroo BB, Naik VG (2014) STRUCTURE PLOT: a program for drawing elegant STRUCTURE bar plots in user friendly interface. Springerplus 3:1–3

    Article  Google Scholar 

  • Rannala B, Yang Z (2017) Efficient Bayesian species tree inference under the multispecies coalescent. Syst Biol 66:823–842

    Article  PubMed  PubMed Central  Google Scholar 

  • Reynolds J, Souty-Grosset C, Richardson A (2013) Ecological roles of crayfish in freshwater and terrestrial habitats. Freshw Crayfish 19:197–218

    Google Scholar 

  • Schuster GA, Taylor CA, Johansen J (2008) An annotated checklist and preliminary designation of drainage distributions of the crayfishes of Alabama. Southeast Nat 7:493–504

    Article  Google Scholar 

  • Silliman K, Indorf J, Knowlton N, Browne B, Hurt C (2021) Base-substitution mutation rate across the nuclear genome of Alpheus snapping shrimp and the timing of isolation by the Isthmus of Panama. BMC Ecol Evol 21(1):1–4

    Google Scholar 

  • Szpiech ZA, Jakobsson M, Rosenberg NA (2008) ADZE: a rarefaction approach for counting alleles private to combinations of populations. Bioinformatics 24:2498–2504

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Taylor CA, Knouft JH (2006) Historical influences on genital morphology among sympatric species: gonopod evolution and reproductive isolation in the crayfish genus Orconectes (Cambaridae). Biol J Lin Soc 89:1–12

    Article  Google Scholar 

  • Thoma RF, Fetzner Jr. JW (2008) Taxonomic status of Cambarus (Jugicambarusjezerinaci, spiny scale crayfish (Powell River crayfish). Report, Virginia Department of Game & Inland Fisheries Richmond, Virginia

  • Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • US Fish and Wildlife Service (1986) Endangered and threatened wildlife and plants; determination of endangered species status for the Nashville Crayfish (Orconectes shoupi). Federal Registrar 51:34410–34412

    Google Scholar 

  • US Fish and Wildlife Service (1987) Nashville crayfish recovery plan. US Fish and Wildlife Service, Atlanta

    Google Scholar 

  • US Fish and Wildlife Service (2018) Species Status Assessment Report for the Nashville Crayfish (Orconectes shoupi). US Fish and Wildlife Service, Atlanta

    Google Scholar 

  • Waples RS (2016) Making sense of genetic estimates of effective population size. Mol Ecol 25:4689–4691

    Article  CAS  PubMed  Google Scholar 

  • Waples RS, Do CH (2008) LDNE: a program for estimating effective population size from data on linkage disequilibrium. Mol Ecol Resour 8:753–756

    Article  PubMed  Google Scholar 

  • Waples RS, Peel D, Macbeth GM, Tillett BJ, Ovenden JR (2014) NeEstimator v2: re-implementation of software for the estimation of contemporary effective population size (Ne) from genetic data. Mol Ecol Resour 14:209–214

    Article  PubMed  Google Scholar 

  • Wetzel JE, Poly WJ, Fetzner JW Jr (2004) Morphological and genetic comparisons of golden crayfish, Orconectes luteus, and rusty crayfish, O. rusticus, with range corrections in Iowa and Minnesota. J Crustac Biol 24:603–617

    Article  Google Scholar 

  • Willing EM, Dreyer C, Van Oosterhout C (2012) Estimates of genetic differentiation measured by FST do not necessarily require large sample sizes when using many SNP markers. PLoS ONE 7:e42649

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wright S (1938) Size of population and breeding structure in relation to evolution. Science 87:430–431

    Google Scholar 

  • Xie W, Lewis PO, Fan Y, Kuo L, Chen MH (2011) Improving marginal likelihood estimation for Bayesian phylogenetic model selection. Syst Biol 60:150–160

    Article  PubMed  Google Scholar 

  • Yang Z (2015) The BPP program for species tree estimation and species delimitation. Curr Zool 61:854–865

    Article  Google Scholar 

  • Yi S, Li Y, Shi L, Zhang L, Li Q, Chen J (2018) Characterization of population genetic structure of red swamp crayfish, Procambarus clarkii, in China. Sci Rep 8:1–11

    Article  Google Scholar 

Download references

Acknowledgements

We thank Philip Hedrick, Jeff Simmons, David Withers and Gerry Dinkins for comments and suggestions on earlier versions of the manuscript. We would also like to thank the USFWS, Edward Lisic and the URECA Team grant program for providing partial funding for this work.

Funding

Funding for this project was provided by the USFWS and through the Undergraduate Research and Creative Activities Program (URECA) at Tennessee Tech University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carla Hurt.

Ethics declarations

Conflict of interest

N/A.

Ethical approval

N/A.

Consent to participate

N/A.

Consent for publication

N/A.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hurt, C., Hildreth, P. & Williams, C. A genomic perspective on the conservation status of the endangered Nashville crayfish (Faxonius shoupi). Conserv Genet 23, 589–604 (2022). https://doi.org/10.1007/s10592-022-01438-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10592-022-01438-6

Keywords

Navigation